Table of Contents Author Guidelines Submit a Manuscript
E-Journal of Chemistry
Volume 9, Issue 4, Pages 1976-1991
http://dx.doi.org/10.1155/2012/172135

Health Risk Assessment for Trace Metals, Polycyclic Aromatic Hydrocarbons and Trihalomethanes in Drinking Water of Cankiri, Turkey

Department of Biochemistry, School of Health, Karatekin University, 18200 Cankiri, Turkey

Received 25 November 2011; Accepted 18 January 2012

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Lifetime exposure to trace metals, pesticides, polycyclic aromatic hydrocarbons (PAHs), trihalomethanes (THMs), and the other chemicals in drinking water through ingestion, and dermal contact may pose risks to human health. In this study, drinking water samples were collected from 50 sampling sites from Cankiri and its towns during 2010. The concentrations of all pollutants were analyzed, and then compared with permissible limits set by Turkish and WHO. For health risk assessment of trace metals, chronic daily intakes (CDIs) via ingestion and dermal contact, hazard quotient (HQ), and hazard index (HI) were calculated by using statistical formulas. For ingestion pathway, the maximum HQ values of As-non cancer in central Cankiri and Kursunlu town were higher than one. Considering dermal adsorption pathway, the mean and maximum HQ values were below one. HI values of As-non cancer in central Cankiri and Kursunlu town were also higher than one. Each trace metal (As-non cancer, B, Cd, Cr, Pb, and Sb) of the mean HI values were slightly below unity. Risks of As, PAHs, THMs, and benzene on human health were then evaluated using carcinogenic risk (CR). It is indicated that CRs of As and THMs were also found >10−5 in drinking water of Cankiri might exert potential carcinogenic risk for people. These assessments would point out required drinking water treatment strategy to ensure safety of consumers.