Journal of Chemistry

Journal of Chemistry / 2012 / Article

Open Access

Volume 9 |Article ID 287909 | 8 pages | https://doi.org/10.1155/2012/287909

Synthesis, Characterization and Antimicrobial Activity of Transition Metal Complexes of Schiff Base Ligand Derived from 3-Ethoxy Salicylaldehyde and 2-(2-Aminophenyl) 1-H-benzimidazole

Received19 Dec 2011
Accepted27 Feb 2012

Abstract

Metal complexes of Ni(II), Co(II), Cu(II), Mn(II) and Zn(II) VO(IV) with a Schiff base derived from 3-Ethoxy Salicylaldehyde and 2-(2-amino-phenyl)1-H-Benzimidazol(2-[(Z)-{(2-(1H-benzimidazole-2yl)phenyl] imino} methyl]-6-ethoxy phenol-BMEP) were synthesized successfully. The resulting complexes were characterized by elemental analysis, magnetic moment measurements, conductivity measurements, IR, UV-VIS, 1H NMR, mass spectra and ESR spectral studies. According to these data, we propose an octahedral geometry to all the metal complexes. Antimicrobial activity of the ligand and its metal complexes were studied against two gram negative bacteria: E. coli, Pseudomonas flourescence and two gram positive bacteria: Bacillus subitilis, Staphylococcus aureus. The activity data show that the metal complexes are more potent than the free ligand.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

1051 Views | 2053 Downloads | 4 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.