Journal of Chemistry

Journal of Chemistry / 2012 / Article

Open Access

Volume 9 |Article ID 380574 | 12 pages |

Determination of Capsaicin and Dihydrocapsaicin in Some Chilli Varieties using Accelerated Solvent Extraction Associated with Solid-Phase Extraction Methods and RP-HPLC-Fluorescence

Received10 Nov 2011
Accepted16 Jan 2012


Reversed phase-HPLC with fluorescence detection of two major capsaicinoids was described. Isocratic elution using a ratio of methanol and deionized water (66:34, v/v) as mobile phase was used at a flow rate of 0.9 mL/min with well achieved separation within 6 min. Under optimum conditions, their analytical figures of merit for the HPLC method were validated. The linearity was in the range of 1.0-25.0 μg/mL with multiple determination coefficients of higher than 0.995. The limit of detection was ranged of 0.008-0.01 μg/mL. The repeatability and reproducibility of the retention time and peak area for these compounds were in good precision with their relative standard deviations (RSDs) lower than 1% and 5%, respectively. Both capsaicin and dihydrocapsaicin were extracted using an accelerated solvent extraction (ASE) of methanol as an extraction solvent for 5 min static time with 3 cycles. The methanolic extracts were subjected to clean up with C18 solid-phase extraction (SPE) with its recoveries ranking of 90.2-98.0%. The method recoveries of real samples were found to be 60.7-98.6%. The optimized extraction method were applied for the determination of the two capsaicinoids in ten vareities of hot chilli pepper samples. Total contents of capsaicinoids were found in the range of 2,307.0-9047.3 μg/g DW with their corresponding Scoville heat unit (SHU) of 34,600-135,700. Additionally, the contents of capsaicinoids using external calibration method comparing with those of standard addition were not significantly different, indicating accuracy of the method. Mostly, the contents of capsaicin found in these real samples were rather higher than those of dihydrocapsaicin.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

781 Views | 6905 Downloads | 14 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.