Journal of Chemistry

Journal of Chemistry / 2012 / Article

Open Access

Volume 9 |Article ID 504767 | 9 pages | https://doi.org/10.1155/2012/504767

Separation of m/p-Aminoacetophenone Using Hydrotropy

Received19 Nov 2011
Accepted15 Jan 2012

Abstract

The aqueous solubilities of m/p-aminoacetophenone in different concentrations (0-3.0 mol/L) of hydrotropes such as diethyl nicotinamide, sodium pseudocumene sulfonate and sodium thiocyanate solutions at different system temperatures (303K to 333K) were studied. The percentage extraction (%E) of m- aminoacetophenone from m/p-aminoacetophenone mixture increases with increase in hydrotrope concentration. A Minimum Hydrotrope Concentration (MHC) in the aqueous phase was required to initiate the significance of the %E of m-aminoacetophenone. Percentage extraction (%E) is the ratio of moles of m-aminoacetophenone extracted in presence and absence of a hydrotrope. The sensitivity and feasibility of the proposed process are examined by carrying out solubilization and equilibrium precipitation experiments with the mixtures of various compositions. The effectiveness of hydrotropes was measured in terms of Setschenow constant Ks. The extraction data are also fitted in a polynomial equation as the function of hydrotrope concentration. The solubilized material can be recovered by dilution with water.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

352 Views | 728 Downloads | 1 Citation
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.