Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013 (2013), Article ID 108318, 7 pages
http://dx.doi.org/10.1155/2013/108318
Research Article

Zirconyl (IV) Nitrate as Efficient and Reusable Solid Lewis Acid Catalyst for the Synthesis of Benzimidazole Derivatives

Department of Chemistry, Research Centre, S. C. S. College, Omerga, Osmanabad 413 606, India

Received 27 April 2013; Accepted 24 May 2013

Academic Editor: Stojan Stavber

Copyright © 2013 Pratapsinha B. Gorepatil et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. M. Ahmed, K. Kobayashi, and A. Mori, “One-pot construction of pyrazoles and isoxazoles with palladium-catalyzed four-component coupling,” Organic Letters, vol. 7, no. 20, pp. 4487–4489, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Kidwai, R. Poddar, S. Diwaniyan, and R. C. Kuhad, “Laccase from basidiomycetous fungus catalyzes the synthesis of substituted 5-deaza-10-oxaflavins via a domino reaction,” Advanced Synthesis and Catalysis, vol. 351, no. 4, pp. 589–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. D. A. Horton, G. T. Bourne, and M. L. Smythe, “The combinatorial synthesis of bicyclic privileged structures or privileged substructures,” Chemical Reviews, vol. 103, no. 3, pp. 893–930, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Alamgir, D. S. Black, and N. Kumar, “Synthesis, reactivity and biological activity of benzimidazoles,” Topics in Heterocyclic Chemistry, vol. 9, pp. 87–118, 2007. View at Google Scholar
  5. J. M. Woynarowski, M. McHugh, R. D. Sigmund, and T. A. Beerman, “Modulation of topoisomerase II catalytic activity by DNA minor groove binding agents distamycin, Hoechst 33258, and 4′,6-diamidine-2-phenylindole,” Molecular Pharmacology, vol. 35, no. 2, pp. 177–182, 1989. View at Google Scholar · View at Scopus
  6. A. Y. Chen, C. Yu, B. Gatto, and L. F. Liu, “DNA minor groove-binding ligands: a different class of mammalian DNA topoisomerase I inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 17, pp. 8131–8135, 1993. View at Google Scholar · View at Scopus
  7. J. S. Kim, B. Gatto, C. Yu, A. Liu, L. F. Liu, and E. J. LaVoie, “Substituted 2,5′-Bi-1H-benzimidazoles: topoisoraerase I inhibition and cytotoxicity,” Journal of Medicinal Chemistry, vol. 39, no. 4, pp. 992–998, 1996. View at Google Scholar · View at Scopus
  8. T. Roth, M. L. Morningstar, P. L. Boyer, S. H. Hughes, R. W. Buckheit Jr., and C. J. Michejda, “Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-aryl-substituted benzimidazoles,” Journal of Medicinal Chemistry, vol. 40, no. 26, pp. 4199–4207, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. P. N. Preston, “Synthesis, reactions, and spectroscopic properties of benzimidazoles,” Chemical Reviews, vol. 74, no. 3, pp. 279–314, 1974. View at Google Scholar · View at Scopus
  10. K. Bahrami, M. M. Khodaei, and I. Kavianinia, “A simple and efficient one-pot synthesis of 2-substituted benzimidazoles,” Synthesis, no. 4, pp. 547–550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. P. L. Beaulieu, B. Haché, and E. von Moos, “A practical oxone—mediated, high-throughput, solution-phase synthesis of benzimidazoles from 1,2-phenylenediamines and aldehydes and its application to preparative scale synthesis,” Synthesis, no. 11, pp. 1683–1692, 2003. View at Google Scholar · View at Scopus
  12. Y. Shiraishi, Y. Sugano, S. Tanaka, and T. Hirai, “One-pot synthesis of benzimidazoles by simultaneous photocatalytic and catalytic reactions on Pt@TiO2 nanoparticles,” Angewandte Chemie—International Edition, vol. 49, no. 9, pp. 1656–1660, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Sluiter and J. Christoffers, “Synthesis of 1-methylbenzimidazoles from carbonitriles,” Synlett, no. 1, pp. 63–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. D. W. Hein, R. J. Alheim, and J. J. Leavitt, “The use of polyphosphoric acid in the synthesis of 2-aryl- and 2-alkyl-substituted benzimidazoles, benzoxazoles and benzothiazoles,” Journal of the American Chemical Society, vol. 79, no. 2, pp. 427–429, 1957. View at Google Scholar · View at Scopus
  15. R. Trivedi, S. K. De, and R. A. Gibbs, “A convenient one-pot synthesis of 2-substituted benzimidazoles,” Journal of Molecular Catalysis A, vol. 245, no. 1-2, pp. 8–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Y.-X. Chen, L.-F. Qian, W. Zhang, and B. Han, “Efficient aerobic oxidative synthesis of 2-substituted benzoxazoles, benzothiazoles, and benzimidazoles catalyzed by 4-methoxy-TEMPO,” Angewandte Chemie—International Edition, vol. 47, no. 48, pp. 9330–9333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. G. A. Molander and K. Ajayi, “Oxidative condensations to form benzimidazole-substituted potassium organotrifluoroborates,” Organic Letters, vol. 14, p. 4242, 2012. View at Google Scholar
  18. M. R. Grimmett, Imidazole and Benzimidazole Synthesis, Academic Press, London, UK, 1997.
  19. M. Curini, F. Epifano, F. Montanari, O. Rosati, and S. Taccone, “Ytterbium triflate promoted synthesis of benzimidazole derivatives,” Synlett, no. 10, pp. 1832–1834, 2004. View at Google Scholar · View at Scopus
  20. K. R. Hornberger, G. M. Adjabeng, H. D. Dickson, and R. G. Davis-Ward, “A mild, one-pot synthesis of disubstituted benzimidazoles from 2-nitroanilines,” Tetrahedron Letters, vol. 47, no. 30, pp. 5359–5361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Mirkhani, M. Moghadam, S. Tangestaninejad, and H. Kargar, “Rapid and efficient synthesis of 2-imidazolines and bis-imidazolines under ultrasonic irradiation,” Tetrahedron Letters, vol. 47, no. 13, pp. 2129–2132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Gogoi and D. Konwar, “An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon-nitrogen bonds in water,” Tetrahedron Letters, vol. 47, no. 1, pp. 79–82, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. R. N. Nadaf, S. A. Siddiqui, T. Daniel, R. J. Lahoti, and K. V. Srinivasan, “Room temperature ionic liquid promoted regioselective synthesis of 2-aryl benzimidazoles, benzoxazoles and benzthiazoles under ambient conditions,” Journal of Molecular Catalysis A, vol. 214, no. 1, pp. 155–160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Das, H. Holla, and Y. Srinivas, “Efficient (bromodimethyl)sulfonium bromide mediated synthesis of benzimidazoles,” Tetrahedron Letters, vol. 48, no. 1, pp. 61–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. U. Srinivas, C. Srinivas, P. Narender, V. J. Rao, and S. Palaniappan, “Polyaniline-sulfate salt as an efficient and reusable catalyst for the synthesis of 1,5-benzodiazepines and 2-phenyl benzimidazoles,” Catalysis Communications, vol. 8, no. 1, pp. 107–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. C. D. Wilfred and R. J. K. Taylor, “Preparation of 2-substituted benzimidazoles and related heterocycles directly from activated alcohols using TOP methodology,” Synlett, no. 9, pp. 1628–1630, 2004. View at Google Scholar · View at Scopus
  27. A. Corma and H. García, “Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis,” Chemical Reviews, vol. 103, no. 11, pp. 4307–4365, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Kobayashi and K. Manabe, “Development of novel Lewis acid catalysts for selective organic reactions in aqueous media,” Accounts of Chemical Research, vol. 35, no. 4, pp. 209–217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Firouzabadi and M. Jafarpour, “Some applications of zirconium(IV) tetrachloride (ZrCl4) and zirconium(IV) oxydichloride octahydrate (ZrOCl2·8H2O) as catalysts or reagents in organic synthesis,” Journal of the Iranian Chemical Society, vol. 5, no. 2, pp. 159–183, 2008. View at Google Scholar · View at Scopus
  30. F. K. Behbahani, P. Ziaei, Z. Fakhroueian, and N. Doragi, “An efficient synthesis of 2-arylbenzimidazoles from o-phenylenediamines and arylaldehydes catalyzed by Fe/CeO2-ZrO2 nano fine particles,” Monatshefte für Chemie, vol. 142, no. 9, pp. 901–906, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. R. V. Shingalapur and K. M. Hosamani, “An efficient and eco-friendly tungstate promoted zirconia (WOx/ZrO2) solid acid catalyst for the synthesis of 2-aryl benzimidazoles,” Catalysis Letters, vol. 137, no. 1-2, pp. 63–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. B. Gorepatil, Y. D. Mane, V. S. Surywanshi, V. S. Shinde, and V. S. Ingle, “One pot synthesis of antimicrobial active new 2-benzimidazolesulfonamide derivatives from 2-mercaptobenzimidazole,” Journal Current Chemical and Pharmaceutical Sciences, vol. 2, no. 4, p. 367, 2012. View at Google Scholar