Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 142752, 6 pages
http://dx.doi.org/10.1155/2013/142752
Research Article

Development of Chromium(III) Selective Potentiometric Sensor by Using Synthesized Triazole Derivative as an Ionophore

1Department of Chemistry, College of Engineering Studies, University of Petroleum and Energy Studies, Uttarakhand, Dehradun 248007, India
2Department of Chemistry, Maharishi Markandeshwar University, Mullana, Haryana, Ambala 133203, India

Received 29 June 2012; Accepted 28 August 2012

Academic Editor: Arturo Espinosa

Copyright © 2013 Pankaj Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A new poly(vinyl chloride) membrane based electrochemical sensor containing synthesized triazole compound, that is, bis-(4-N-amino-5-mercapto-1,2,4-triazol-3-yl)alkane (BAMTA) as an electroactive material was prepared and investigated as a chromium(III) selective sensor. The optimum composition of the best performing membrane contained triazole, sodium tetraphenylborate (NaTPB), nitrophenyl octyl-ether (NPOE), and polyvinyl-chloride (PVC) in the ratio 10 : 2 : 50 : 38 w/w. The sensor exhibited near Nernstian slope of  mV/decade of activity in the working concentration range of  M. It displayed a stable potential response in the pH range 3.4–5.2. The sensor exhibited a fast response time of less than 10 s and could be used for at least 6 weeks without any considerable divergence in potentials. The proposed sensor showed very good selectivity over most of the common cations including Li+, K+, Na+, Ni2+, Co2+, Cu2+, Sr2+, Ba2+, Cs+, Pb2+, Zn2+, Mg2+, Cd2+, Al3+, Fe3+, and La3+. It could be employed successfully for the determination of Cr(III) ion activity in electroplating and leather tanning industry wastes.