Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 191563, 12 pages
http://dx.doi.org/10.1155/2013/191563
Research Article

Genistein Derivatives Regioisomerically Substituted at 7-O- and 4′-O- Have Different Effect on the Cell Cycle

1Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Wybrzeze AK 15, 44-100 Gliwice, Poland
2Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
3Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warsaw, Poland

Received 31 May 2013; Revised 26 September 2013; Accepted 1 October 2013

Academic Editor: Marjana Novic

Copyright © 2013 A. Byczek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. M. Kyle and G. G. Duthie, “Flavonoids in foods,” in Flavonoids: Chemistry, Biochemistry, and Applications, M. Ø. Andersen, K. R. Markham, and S. Quideau, Eds., pp. 219–262, Taylor & Francis, Boca Raton, Fla, USA, 2006. View at Google Scholar
  2. F. Casagrande and J.-M. Darbon, “Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1,” Biochemical Pharmacology, vol. 61, no. 10, pp. 1205–1215, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Zapata-Torres, F. Opazo, C. Salgado et al., “Effects of natural flavones and flavonols on the kinase activity of Cdk5,” Journal of Natural Products, vol. 67, no. 3, pp. 416–420, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. K.-L. Chang, M.-L. Kung, N.-H. Chow, and S.-J. Su, “Genistein arrests hepatoma cells at G2/M phase: involvement of ATM activation and upregulation of p21waf1/cip1 and Wee1,” Biochemical Pharmacology, vol. 67, no. 4, pp. 717–726, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. G. I. Salti, S. Grewal, R. R. Mehta, T. K. Das Gupta, A. W. Boddie Jr., and A. I. Constantinou, “Genistein induces apoptosis and topoisomerase II-mediated DNA breakage in colon cancer cells,” European Journal of Cancer, vol. 36, no. 6, pp. 796–802, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Banerjee, Y. Li, Z. Wang, and F. H. Sarkar, “Multi-targeted therapy of cancer by genistein,” Cancer Letters, vol. 269, no. 2, pp. 226–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Rusin and Z. Krawczyk, “Genistein derivatization—from a dietary supplement to a pharmaceutical agent,” in Soybean and Health, H. El-Shemy, Ed., pp. 253–282, InTech, Zagreb, Croatia, 2011. View at Google Scholar
  8. A. Rusin, Z. Krawczyk, G. Grynkiewicz, A. Gogler, J. Zawisza-Puchałka, and W. Szeja, “Synthetic derivatives of genistein, their properties and possible applications,” Acta Biochimica Polonica, vol. 57, no. 1, pp. 23–34, 2010. View at Google Scholar · View at Scopus
  9. S. Djiogue, D. Njamen, M. Halabalaki et al., “Estrogenic properties of naturally occurring prenylated isoflavones in U2OS human osteosarcoma cells: structure-activity relationships,” Journal of Steroid Biochemistry and Molecular Biology, vol. 120, no. 4-5, pp. 184–191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Rusin, A. Gogler, A. Gruca et al., “Genistein derivatives potentiate inhibition of cancer cells growth by irradiation,” FEBS Journal, vol. 276, supplement 1, pp. 340–341, 2009. View at Google Scholar
  11. A. Rusin, J. Zawisza-Puchałka, K. Kujawa et al., “Synthetic conjugates of genistein affecting proliferation and mitosis of cancer cells,” Bioorganic and Medicinal Chemistry, vol. 19, no. 1, pp. 295–305, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Polkowski, J. Popiołkiewicz, P. Krzeczyński et al., “Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines,” Cancer Letters, vol. 203, no. 1, pp. 59–69, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. L. N. Zhang, Z. P. Xiao, H. Ding et al., “Synthesis and cytotoxic evaluation of novel 7-O-modified genistein derivatives,” Chemistry & Biodiversity, vol. 4, no. 2, pp. 248–255, 2007. View at Google Scholar
  14. G.-X. Hu, B.-H. Zhao, Y.-H. Chu et al., “Effects of genistein and equol on human and rat testicular 3Β-hydroxysteroid dehydrogenase and 17Β-hydroxysteroid dehydrogenase 3 activities,” Asian Journal of Andrology, vol. 12, no. 4, pp. 519–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Rusin, M. Chrubasik, K. Papaj, G. Grynkiewicz, and W. Szeja, “C-Glycosidic genistein conjugates and their antiproliferative activity,” Journal of Chemistry, vol. 2013, Article ID 951392, 14 pages, 2013. View at Publisher · View at Google Scholar
  16. A. Gogler-Piglowska, A. Rusin, D. Bochenek, and Z. Krawczyk, “Aneugenic effects of the genistein glycosidic derivative substituted at C7 with the unsaturated disaccharide,” Cell Biology and Toxicology, vol. 28, no. 5, pp. 331–342, 2012. View at Google Scholar
  17. A. Rusin, A. Gogler, M. Głowala-Kosińska et al., “Unsaturated genistein disaccharide glycoside as a novel agent affecting microtubules,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 17, pp. 4939–4943, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Metzler and E. Pfeiffer, “Effects of estrogens on microtubule polymerization in vitro: correlation with estrogenicity,” Environmental Health Perspectives, vol. 103, no. 7, pp. 21–22, 1995. View at Google Scholar · View at Scopus
  19. S. Mukherjee, B. R. Acharya, B. Bhattacharyya, and G. Chakrabarti, “Genistein arrests cell cycle progression of A549 cells at the G 2/M phase and depolymerizes interphase microtubules through binding to a unique site of tubulin,” Biochemistry, vol. 49, no. 8, pp. 1702–1712, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. T. Lewis, K. Wähälä, A. Hoikkala et al., “Synthesis of antioxidant isoflavone fatty acid esters,” Tetrahedron, vol. 56, no. 39, pp. 7805–7810, 2000. View at Google Scholar · View at Scopus
  21. W. Szeja, J. Puchałka, P. Świerk, A. B. Hendrich, and G. Grynkiewicz, “Selective alkylation of genistein and daidzein,” Chemistry & Biology Interface, vol. 3, pp. 95–106, 2013. View at Google Scholar
  22. F. Bunz, P. M. Hwang, C. Torrance et al., “Disruption of p53 in human cancer cells alters the responses to therapeutic agents,” The Journal of Clinical Investigation, vol. 104, no. 3, pp. 263–269, 1999. View at Google Scholar · View at Scopus
  23. A. Zajkowicz and M. Rusin, “The activation of the p53 pathway by the AMP mimetic AICAR is reduced by inhibitors of the ATM or mTOR kinases,” Mechanisms of Ageing and Development, vol. 132, no. 11-12, pp. 543–551, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Klaude, S. Eriksson, J. Nygren, and G. Ahnström, “The comet assay: mechanisms and technical considerations,” Mutation Research, vol. 363, no. 2, pp. 89–96, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Wojewódzka, I. Buraczewska, and M. Kruszewski, “A modified neutral comet assay: elimination of lysis at high temperature and validation of the assay with anti-single-stranded DNA antibody,” Mutation Research, vol. 518, no. 1, pp. 9–20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Fenech, “The in vitro micronucleus technique,” Mutation Research, vol. 455, no. 1-2, pp. 81–95, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. K. V. Gurova, O. W. Rokhlin, A. V. Budanov et al., “Cooperation of two mutant p53 alleles contributes to Fas resistance of prostate carcinoma cells,” Cancer Research, vol. 63, no. 11, pp. 2905–2912, 2003. View at Google Scholar · View at Scopus
  28. J. Bartek and J. Lukas, “Mammalian G1- and S-phase checkpoints in response to DNA damage,” Current Opinion in Cell Biology, vol. 13, no. 6, pp. 738–747, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Schmidt, C. B. Knobbe, B. Frank, H. Wolburg, and M. Weller, “The topoisomerase II inhibitor, genistein, induces G2/M arrest and apoptosis in human malignant glioma cell lines,” Oncology Reports, vol. 19, no. 4, pp. 1061–1066, 2008. View at Google Scholar · View at Scopus
  30. U. M. Moll and O. Petrenko, “The MDM2-p53 interaction,” Molecular Cancer Research, vol. 1, no. 14, pp. 1001–1008, 2003. View at Google Scholar · View at Scopus
  31. D. G. Hardie, “AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function,” Genes & Development, vol. 25, no. 18, pp. 1895–1908, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Kroemer, G. Mariño, and B. Levine, “Autophagy and the integrated stress response,” Molecular Cell, vol. 40, no. 2, pp. 280–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. E. T. W. Bampton, C. G. Goemans, D. Niranjan, N. Mizushima, and A. M. Tolkovsky, “The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes,” Autophagy, vol. 1, no. 1, pp. 23–36, 2005. View at Google Scholar · View at Scopus
  34. M. Oblak, M. Randic, and T. Solmajer, “Quantitative structure-activity relationship of flavonoid analogues. 3. Inhibition of p56lck protein tyrosine kinase,” Journal of Chemical Information and Computer Sciences, vol. 40, no. 4, pp. 994–1001, 2000. View at Google Scholar · View at Scopus
  35. Z. Nikolovska-Coleska, L. Suturkova, K. Dorevski, A. Krbavcic, and T. Solmajer, “Quantitative structure-activity relationship of flavonoid inhibitors of p56(lck) protein tyrosine kinase: a Classical/Quantum chemical approach,” Quantitative Structure-Activity Relationships, vol. 17, no. 1, pp. 7–13, 1998. View at Google Scholar · View at Scopus
  36. K. Machida and K. Osawa, “On the flavonoid constituents from the peels of citrus-hassaku hort ex tanaka,” Chemical & Pharmaceutical Bulletin, vol. 37, no. 4, pp. 1092–1094, 1989. View at Google Scholar
  37. M.-H. Pan, W.-J. Chen, S.-Y. Lin-Shiau, C.-T. Ho, and J.-K. Lin, “Tangeretin induces cell-cyle G1 arrest through inhibiting cyclin-dependent kinases 2 and 4 activities as well as elevating Cdk inhibitors p21 and p27 in human colorectal carcinoma cells,” Carcinogenesis, vol. 23, no. 10, pp. 1677–1684, 2002. View at Google Scholar · View at Scopus
  38. M. F. Aguero, M. M. Facchinetti, Z. Sheleg, and A. M. Senderowicz, “Phenoxodiol, a novel isoflavone, induces G1 arrest by specific loss in cyclin-dependent kinase 2 activity by p53-independent induction of p21WAF1/CIP1,” Cancer Research, vol. 65, no. 8, pp. 3364–3373, 2005. View at Google Scholar · View at Scopus
  39. C. B. Klein and A. A. King, “Genistein genotoxicity: critical considerations of in vitro exposure dose,” Toxicology and Applied Pharmacology, vol. 224, no. 1, pp. 1–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. O. J. Bandele, S. J. Clawson, and N. Osheroff, “Dietary polyphenols as topoisomerase II poisons: B ring and C ring substituents determine the mechanism of enzyme-mediated DNA cleavage enhancement,” Chemical Research in Toxicology, vol. 21, no. 6, pp. 1253–1260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. O. J. Bandele and N. Osheroff, “The efficacy of topoisomerase II-targeted anticancer agents reflects the persistence of drug-induced cleavage complexes in cells,” Biochemistry, vol. 47, no. 45, pp. 11900–11908, 2008. View at Publisher · View at Google Scholar · View at Scopus