Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013 (2013), Article ID 250739, 7 pages
http://dx.doi.org/10.1155/2013/250739
Research Article

Loranthus pulverulentus: A Potent Source of Natural Antioxidants and Alternative Medicine

1Center of Natural Product, Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan
2Research Laboratory II, Department of Chemistry, Government College University, Lahore 54000, Pakistan

Received 24 May 2013; Revised 5 September 2013; Accepted 6 September 2013

Academic Editor: Iciar Astiasaran

Copyright © 2013 Muhammad Asam Raza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Cotton, Ethnobotany: Principals and Applications, John Wiley & Sons, Chichister, UK, 1996.
  2. J. Buckingham, Dictionary of Natural Compounds, Chapman and Hall, london, UK, 1999.
  3. A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, and N. Vidal, “Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds,” Food Chemistry, vol. 97, no. 4, pp. 654–660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Azzi, K. J. A. Davies, and F. Kelly, “Free radical biology—terminology and critical thinking,” FEBS Letters, vol. 558, no. 1–3, pp. 3–6, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Barlow, “Provisional key to the genera of Loranthaceae and Viscaceae of the flora Malesiana region,” Flora Malesiana Bulletin, vol. 10, pp. 335–338, 1991. View at Google Scholar
  6. R. K.-Y. Zee-Cheng, “Anticancer research on Loranthaceae plants,” Drugs of the Future, vol. 22, no. 5, pp. 519–530, 1997. View at Google Scholar · View at Scopus
  7. M. Ajaib, Z.-U. Khan, N. Khan, and M. Wahab, “Ethnobotanical studies on useful shrubs of district Kotli, Azad Jammu & Kashmir, Pakistan,” Pakistan Journal of Botany, vol. 42, no. 3, pp. 1407–1415, 2010. View at Google Scholar · View at Scopus
  8. S. G. Khattak, S. N. Gilani, and M. Ikram, “Antipyretic studies on some indigenous Pakistani medicinal plants,” Journal of Ethnopharmacology, vol. 14, no. 1, pp. 45–51, 1985. View at Google Scholar · View at Scopus
  9. D. Shahwar, S.-U. Shafiq-ur-Rehman, N. Ahmad, S. Ullah, and M. A. Raza, “Antioxidant activities of the selected plants from the family Euphorbiaceae, Lauraceae, Malvaceae and Balsaminaceae,” African Journal of Biotechnology, vol. 9, no. 7, pp. 1086–1096, 2010. View at Google Scholar · View at Scopus
  10. D. Shahwar, S. U. Rehman, and M. A. Raza, “Acetyl cholinesterase inhibition potential and antioxidant activities of ferulic acid isolated from Impatiens bicolor Linn,” Journal of Medicinal Plant Research, vol. 4, no. 3, pp. 260–266, 2010. View at Google Scholar · View at Scopus
  11. A. B. Aliyu, H. Ibrahim, A. M. Musa, M. A. Ibrahim, A. O. Oyewale, and J. O. Amupitan, “In vitro evaluation of antioxidant activity of Anisopus mannii N.E. Br,” African Journal of Biotechnology, vol. 9, no. 16, pp. 2437–2441, 2010. View at Google Scholar · View at Scopus
  12. J. M. Awika, L. W. Rooney, X. Wu, R. L. Prior, and L. Cisneros-Zevallos, “Screening methods to measure antioxidant activity of Sorghum (Sorghum bicolor) and Sorghum products,” Journal of Agricultural and Food Chemistry, vol. 51, no. 23, pp. 6657–6662, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Yu, S. Haley, J. Perret, M. Harris, J. Wilson, and M. Qian, “Free radical scavenging properties of wheat extracts,” Journal of Agricultural and Food Chemistry, vol. 50, no. 6, pp. 1619–1624, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Van den Berg, G. R. M. M. Haenen, H. van den Berg, W. van der Vijgh, and A. Bast, “The predictive value of the antioxidant capacity of structurally related flavonoids using the trolox equivalent antioxidant capacity (TEAC) assay,” Food Chemistry, vol. 70, no. 3, pp. 391–395, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Özcelik, J. H. Lee, and D. B. Min, “Effects of light, oxygen and pH on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method to evaluate antioxidants,” Journal Agricultural and Food Chemistry, vol. 68, pp. 487–490, 2003. View at Google Scholar
  16. J. R. Soares, T. C. P. Dinis, A. P. Cunha, and L. M. Almeida, “Antioxidant activities of some extracts of Thymus zygis,” Free Radical Research, vol. 26, no. 5, pp. 469–478, 1997. View at Google Scholar · View at Scopus
  17. A. D. Boveris, M. Galleano, and S. Puntarulo, “In vivo supplementation with Ginkgo biloba protects membranes against lipid peroxidation,” Phytotherapy Research, vol. 21, no. 8, pp. 735–740, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. L. Fritz, C. M. Seppanen, M. S. Kurzer, and A. Csallany Saari, “The in vivo antioxidant activity of soybean isoflavones in human subjects,” Nutrition Research, vol. 23, no. 4, pp. 479–487, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, “Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products,” Journal of Agricultural and Food Chemistry, vol. 46, no. 10, pp. 4113–4117, 1998. View at Google Scholar · View at Scopus
  20. J. Vaya and M. Aviram, “Nutritional antioxidants mechanisms of action, analysis of activities and medical applications,” Current Medicinal Chemistry, vol. 1, pp. 99–117, 2001. View at Publisher · View at Google Scholar
  21. D. Amić, D. Davidović-Amić, D. Bešlo, V. Rastija, B. Lučić, and N. Trinajstić, “SAR and QSAR of the antioxidant activity of flavonoids,” Current Medicinal Chemistry, vol. 14, no. 7, pp. 827–845, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Sawa, M. Nakao, T. Akaike, K. Ono, and H. Maeda, “Alkylperoxyl radical-scavenging activity of various flavonoids and other phenolic compounds: implications for the anti-tumor-promoter effect of vegetables,” Journal of Agricultural and Food Chemistry, vol. 47, no. 2, pp. 397–402, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Jun, U. Tohru, L. Jianzhang, and F. Takeshi, “Identification and evaluation of antioxidant activities of bamboo extracts,” Forestry Studies in China, vol. 6, pp. 1–5, 2004. View at Google Scholar
  24. G. C. Yen and H. Y. Chen, “Antioxidant activity of various tea extracts in relation to their antimutagenicit,” Journal Agricultural and Food Chemistry, vol. 46, pp. 849–854, 1995. View at Google Scholar
  25. O. Erol-Dayi, M. Pekmez, M. Bona, A. Aras-Perk, and N. Arda, “Total phenolic contents, antioxidant activities and cytotoxicity of three Centaurea species: C. calcitrapa subsp. calcitrapa, C. ptosimopappa and C. spicata,” Free Radical Antioxidant, vol. 1, pp. 31–36, 2011. View at Google Scholar
  26. E. Middleton Jr., C. Kandaswami, and T. C. Theoharides, “The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer,” Pharmacological Reviews, vol. 52, no. 4, pp. 673–751, 2000. View at Google Scholar · View at Scopus
  27. L. Packer, G. Rimbach, and F. Virgili, “Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol,” Free Radical Biology and Medicine, vol. 27, no. 5-6, pp. 704–724, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Vaya and M. Aviram, “Nutritional antioxidants mechanisms of action, analysis of activities and medical applications,” Current Medicinal Chemistry, vol. 1, no. 1, pp. 99–117, 2001. View at Publisher · View at Google Scholar