Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013 (2013), Article ID 250760, 6 pages
http://dx.doi.org/10.1155/2013/250760
Research Article

Preparation and Electrocatalytic Characteristics Research of Pd/C Catalyst for Direct Ethanol Fuel Cell

Shanghai Key Laboratory of Colleges and Universities for Corrosion Control in Electric Power System and Applied Electrochemistry, Shanghai University of Electric Power, Shanghai 200090, China

Received 31 October 2012; Revised 7 January 2013; Accepted 21 January 2013

Academic Editor: Valeria La Parola

Copyright © 2013 Qiao Xia Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. M. Cunha, J. Riberto, K. B. Kokoh, and A. R. de Anerade, “Preparation, characterization and application of Pt-Ru-Sn/C trimetallic electro-catalysts for ethanol oxidation in direct fuel cell,” International Journal of Hydrogen Energy, vol. 36, no. 17, pp. 11034–11042, 2011. View at Publisher · View at Google Scholar
  2. B. R. Tao, J. Zhang, S. C. Hui, X. J. Chen, and L. J. Wan, “An electrochemical methanol sensor based on a Pd–Ni/SiNWs catalytic electrode,” Electrochimica Acta, vol. 55, no. 17, pp. 5019–5023, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Ogi, R. Honda, K. Tamaoki, N. Saitoh, and Y. Konishi, “Direct room-temperature synthesis of a highly dispersed Pd nanoparticle catalyst and its electrical properties in a fuel cell,” Powder Technology, vol. 205, no. 1–3, pp. 143–148, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Mahendiran, T. Maiyalagan, K. Scott, and A. Gedanken, “Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation,” Materials Chemistry and Physics, vol. 128, no. 3, pp. 341–347, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. L. Wen, S. D. Yang, Y. Y. Liang et al., “The improved electrocatalytic activity of palladium/graphene nanosheets towards ethanol oxidation by tin oxide,” Electrochimica Acta, vol. 56, no. 1, pp. 139–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Kim, T. Momma, and T. Osaka, “Cell performance of Pd–Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane,” Journal of Power Sources, vol. 189, no. 2, pp. 999–1002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. C. Oliveira, R. Rego, L. S. Fernandes, and P. B. Tavares, “Evaluation of the catalytic activity of Pd–Ag alloys on ethanol oxidation and oxygen reduction reactions in alkaline medium,” Journal of Power Sources, vol. 196, no. 15, pp. 6092–6098, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Wang, Z. M. Sheng, H. Yang, S. P. Jiang, and C. M. Li, “Electrocatalysis of carbon black- or activated carbon nanotubes-supported Pd–Ag towards methanol oxidation in alkaline media,” International Journal of Hydrogen Energy, vol. 35, no. 19, pp. 10087–10093, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. W. Tang, S. Cao, Y. Chen et al., “Effect of Fe state on electrocatalytic activity of Pd–Fe/C catalyst for oxygen reduction,” Applied Surface Science, vol. 256, no. 13, pp. 4196–4200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. L. Liu, X. H. Zhang, and L. Hong, “Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation,” Electrochemistry Communications, vol. 11, no. 4, pp. 925–928, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Y. Zhou, Q. Wang, J. L. Lin, N. Tian, and S. G. Sun, “In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media,” Electrochimica Acta, vol. 55, no. 27, pp. 7995–7999, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Radmilovic, H. A. Gasteiger, and P. N. Ross, “Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation,” Journal of Catalysis, vol. 154, no. 1, pp. 98–106, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. F. Yi, F. J. Niu, and L. Z. Sun, “Fabrication of novel porous Pd particles and their electroactivity towards ethanol oxidation in alkaline media,” Fuel, vol. 90, no. 8, pp. 2617–2623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Wang, T. S. Nguyen, X. W. Liu, and X. Wang, “Novel palladium-lead (Pd–Pb/C) bimetallic catalysts for electrooxidation of ethanol in alkaline media,” Journal of Power Sources, vol. 195, no. 9, pp. 2619–2622, 2010. View at Google Scholar
  15. Z. Y. Zhang, L. Xin, K. Sun, and W. Z. Li, “Pd–Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte,” International Journal of Hydrogen Energy, vol. 36, no. 20, pp. 12686–12697, 2011. View at Publisher · View at Google Scholar
  16. A. Maghsodi, M. R. M. Hoseini, M. D. Mobarakeh et al., “Exploration of bimetallic Pt-Pd/C nanoparticles as an electrocatalyst for oxygen reduction reaction,” Applied Surface Science, vol. 257, no. 15, pp. 6353–6357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Hara, U. Linke, and T. Wandlowski, “Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HClO4—part I: low-index phases,” Electrochimica Acta, vol. 52, no. 18, pp. 5733–5748, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. J. Huang, X. C. Zhou, J. H. Liao, C. P. Liu, T. H. Lu, and W. Xing, “Preparation of Pd/C catalyst for formic acid oxidation using a novel colloid method,” Electrochemistry Communications, vol. 10, no. 4, pp. 621–624, 2008. View at Publisher · View at Google Scholar · View at Scopus