Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 265107, 7 pages
http://dx.doi.org/10.1155/2013/265107
Research Article

Synthesis, Molecular Modeling, and Biological Activity of Zinc(II) Salts with 1,4-Bis(benzimidazol-2-yl)benzene

Department of Chemistry, Sahyadri Science College (Autonomous), Kuvempu University, Shimoga-577203, Karnataka, India

Received 22 June 2012; Revised 10 August 2012; Accepted 10 August 2012

Academic Editor: Narcis Avarvari

Copyright © 2013 G. Krishnamurthy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Shashikala, V. Gayathri, N. M. Nanjegowda, and G. K. N. Reddy, “Reactions of 2,6-bis(2-benzimidazyl)pyridine with some acids and cobalt(II) and nickel(II) salts,” Journal of Indian Chemical Society, vol. 66, pp. 537–540, 1989. View at Google Scholar
  2. V. Gayathri, N. Shashikala, N. M. Nanjegowda, and G. K. N. Reddy, “Synthesis and spectral properties of 1,3-bis(2-benzimidazyl)benzene and its N-methylated derivative-reactions with some acids and cobalt(II) salts,” Indian Journal of Chemistry A, vol. 32, pp. 33–38, 1993. View at Google Scholar
  3. S. Satyanarayana and K. R. Nagasundara, “Synthesis and spectral properties of the complexes of cobalt(II), nickel(II), copper(II), zinc(II), and cadmium(II) with 2-(thiomethyl-2-benzimidazolyl)-benzimidazole,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 34, no. 5, pp. 883–895, 2004. View at Publisher · View at Google Scholar
  4. N. Shivakumaraiah and N. M. Nanjegowda, “Reactions of zinc salts with bis(benzimidazolyl) derivatives,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol. 33, no. 7, pp. 1207–1220, 2003. View at Publisher · View at Google Scholar
  5. S. Ruttimann, G. Bernardinelli, and A. F. Williams, “Synthesis and structure of a trimeric cyclometalated coordination compound with a hydrophobic cavity,” Angewandte Chemie, vol. 32, no. 3, pp. 392–394, 1993. View at Publisher · View at Google Scholar
  6. A. W. Addsion, T. Nageswara Rao, J. Reedijk, J. C. Rijn, and G. C. Verschoor, “Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-22-yl)-2,6-dithiaheptane]copper(II) perchlorate,” Journal of the Chemical Society, Dalton Transactions, no. 7, pp. 1349–1356, 1984. View at Publisher · View at Google Scholar
  7. A. E. Martel, Metal Ions in Biological Systems, vol. 2, Marcel Dekker, New York, NY, USA, 1973.
  8. K. D. Karlin and J. Zubieta, Biological and Inorganic Copper Chemistry, Adenine Press, New York, NY, USA, 1986.
  9. R. H. Prince, “Some aspects of the bioinorganic chemistry of zinc,” Advances in Inorganic Chemistry and Radiochemistry, vol. 22, pp. 349–440, 1979. View at Publisher · View at Google Scholar
  10. S. Chandra, S. Parmar, and Y. Kumar, “Synthesis, spectroscopic, and antimicrobial studies on bivalent zinc and mercury complexes of 2-formylpyridine thiosemicarbazone,” Bioinorganic Chemistry and Applications, vol. 2009, Article ID 851316, 6 pages, 2009. View at Publisher · View at Google Scholar
  11. M. I. Zaidi, F. H. Wattoo, M. H. S. Wattoo, S. A. Tirmizi, and S. Salman, “Antibacterial activities of nicotine and its zinc complex,” African Journal of Microbiology Research, vol. 6, no. 24, pp. 5134–5137, 2012. View at Google Scholar
  12. S. S. Kukalenko, B. A. Bovykin, S. I. Shestakova, and A. M. Ometchenko, “Metal-containing complexes of lactams, imidazoles, and benzimidazoles and their biological activity,” Russian Chemical Reviews, vol. 54, no. 7, article 676, 1985. View at Publisher · View at Google Scholar
  13. I. Tamm, R. Bablanian, M. M. Nemes, C. H. Shunk, F. M. Robinson, and K. Folkers, “Relationship between structure of benzimidazole derivatives and selective virus inhibitory activity. Inhibition of poliovirus multiplication and cytopathic effects by 2-(alpha-hydroxybenzyl)-benzimidazole, and its 5-chloroderivative,” Journal of Experimental Medicine, vol. 113, pp. 625–656, 1961. View at Google Scholar
  14. D. D. Perrin, W. L. F. Armarego, and D. R. Perrin, Purification of Laboratory Chemicals, Pergaman Press, Oxford, UK, 1966.
  15. F. Bei, F. F. Jian, X. Yang et al., “1,4-bis(2-benzimidazolyl)benzene,” Acta Crystallographica C, vol. 56, pp. 718–719, 2000. View at Publisher · View at Google Scholar
  16. E. O. Ajaiyeoba, P. A. Onocha, and O. T. Olarenwaju, “In vitro anthelmintic properties of Buchholzia coriaceae and Gynandropsis gynandra extracts,” Pharmaceutical Biology, vol. 39, no. 3, pp. 217–220, 2001. View at Publisher · View at Google Scholar
  17. W. J. Geary, “The use of conductivity measurements in organic solvents for the characterisation of coordination compounds,” Coordination Chemistry Reviews, vol. 7, no. 1, pp. 81–122, 1971. View at Publisher · View at Google Scholar
  18. T. J. Lane, I. Nakagawa, J. L. Walter, and A. J. Kandathil, “Infrared investigation of certain imidazole derivatives and their metal chelates,” Inorganic Chemistry, vol. 1, no. 2, pp. 267–276, 1962. View at Google Scholar
  19. E. W. Ainscough, A. M. Brodie, and N. G. Larsen, “Sulphur ligand metal complexes. Part 15. [1]. Sulphurnitrogen donor ligand complexes of copper,” Inorganica Chimica Acta, vol. 60, pp. 25–34, 1982. View at Publisher · View at Google Scholar
  20. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley Interscience, John Wiley & Sons, NewYork, NY, USA, 2nd edition, 1970.
  21. N. M. N. Gowda, S. B. Naikar, and G. K. N. Reddy, “Perchlorate Ion complexes,” Advances in Inorganic Chemistry, vol. 28, pp. 255–299, 1984. View at Publisher · View at Google Scholar
  22. L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall, London, UK, 1975.
  23. K. Nakanishi and P. H. Soloman, Infrared Absorption Spectroscopy, Holden-Day, Sydney, Australia, 1977.
  24. R. J. Pugmire and D. M. Grant, “Carbon-13 magnetic resonance. XIX. Benzimidazole, purine, and their anionic and cationic species,” Journal of the American Chemical Society, vol. 93, no. 8, pp. 1880–1887, 1971. View at Publisher · View at Google Scholar
  25. L. J. Mathias and C. G. Overberger, “Carbon-13 nuclear magnetic resonance chemical shifts of substituted benzimidazoles and 1,3-diazaazulene,” Journal of Organic Chemistry, vol. 43, no. 18, pp. 3526–3530, 1978. View at Publisher · View at Google Scholar
  26. X. Xiamong, M. Haga, T. Matsumura-Inoue, Y. Ru, A. W. Addison, and K. Kano, “Synthesis and proton transfer-linked redox tuning of ruthenium(II) complexes with tridentate 2,6-bis(benzimidazol-2-yl)pyridine ligands,” Journal of the Chemical Society, Dalton Transactions, no. 16, pp. 2477–2484, 1993. View at Publisher · View at Google Scholar
  27. S. Wang, Q. Luo, X. Zhou, and Z. Zeng, “Synthesis, characterization and luminescence properties of lanthanide(III) complexes with 2,6-bis(benzimidazol-2-yl)pyridine,” Polyhedron, vol. 12, no. 15, pp. 1939–1945, 1993. View at Google Scholar
  28. J. R. Allan, J. G. Bonner, D. L. Gerrard, and Mirmied, “Structural characterisation and thermal analysis studies of the compounds of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with poly(crylic acid),” Thermochimica Acta, vol. 185, no. 2, pp. 295–302, 1991. View at Publisher · View at Google Scholar
  29. Full working trial version, Molecular Modeling Pro plus published by ChemSW(R).