Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 265864, 5 pages
http://dx.doi.org/10.1155/2013/265864
Research Article

Synthesis of Silver Nanoparticles Using Triticum aestivum and Its Effect on Peroxide Catalytic Activity and Toxicology

1Department of Chemistry Abasaheb Garware College, Pune 411004, India
2Department of Chemistry, Y. M. College, Bharati Vidyapeeth, Pune 411038, India

Received 6 May 2013; Revised 10 June 2013; Accepted 11 June 2013

Academic Editor: Hassan Karimi-Maleh

Copyright © 2013 Shobha Waghmode et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Mazur, “Electrochemically prepared silver nanoflakes and nanowires,” Electrochemistry Communications, vol. 6, no. 4, pp. 400–403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Rastakhiz, H. Beitollahi, A. Kariminik, and F. Karimi, “Voltammetric determination of carbidopa in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode,” Journal of Molecular Liquids, vol. 172, pp. 66–70, 2012. View at Google Scholar
  3. H. Yaghoubian, H. Karimi-Maleh, M. A. Khalilzadeh, and F. Karimi, “Electrocatalytic oxidation of levodopa at a ferrocene modified carbon nanotube paste electrode,” International Journal of Electrochemical Science, vol. 4, no. 7, pp. 993–1003, 2009. View at Google Scholar · View at Scopus
  4. M. Asnaashariisfahani, H. Karimi-maleh, H. Ahmar et al., “Novel 8, 9-dihydroxy-7-methyl-12H-benzothiazolo[2, 3-b]quinazolin-12-one multiwalled carbon nanotubes paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan,” Analytical Methods, vol. 4, pp. 3275–3282, 2012. View at Publisher · View at Google Scholar
  5. H. Karimi-Maleh, M. A. Khalilzadeh, Z. Ranjbarha, H. Beitollahi, A. A. Ensafi, and D. Zareyee, “p-Chloranil modified carbon nanotubes paste electrode as a voltammetric sensor for the simultaneous determination of methyldopa and uric acid,” Analytical Methods, vol. 4, pp. 2088–2094, 2012. View at Google Scholar
  6. A. A. Ensafi, M. Ghiaci, M. Arshadi, and H. Karimi-Maleh, “Synthesis and characterization of ferrocenecarboxaldehyde immobilized on modified SiO2-Al2O3 in nanoscale, application for determination of penicillamine,” Journal of Nanoparticle Research, vol. 15, p. 1610, 2013. View at Publisher · View at Google Scholar
  7. M. Baghayeri, M. Namadchian, H. Karimi-Maleh, and H. Beitollahi, “Determination of nifedipine using nanostructured electrochemical sensor based on simple synthesis of Ag nanoparticles at the surface of glassy carbon electrode: application to the analysis of some real samples,” Journal of Electroanalytical Chemistry, vol. 697, pp. 53–59, 2013. View at Google Scholar
  8. A. A. Ensafi and H. Karimi-Maleh, “Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator,” Journal of Electroanalytical Chemistry, vol. 640, no. 1-2, pp. 75–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Afsharmanesh, H. Karimi-Maleh, A. Pahlavan, and J. Vahedi, “Electrochemical behavior of morphine at ZnO/CNT nanocomposite room temperature ionic liquid modified carbon paste electrode and its determination in real samples,” Journal of Molecular Liquids, vol. 181, pp. 8–13, 2013. View at Google Scholar
  10. A. A. Ensafi, H. Bahrami, B. Rezaei, and H. Karimi-Maleh, “Application of ionic liquid-TiO2 nanoparticle modified carbon paste electrode for the voltammetric determination of benserazide in biological samples,” Materials Science and Engineering C, vol. 33, no. 2, pp. 831–835, 2013. View at Google Scholar
  11. A. A. Ensafi, H. Karimi-Maleh, M. Ghiaci, and M. Arshadi, “Characterization of Mn-nanoparticles decorated organo-functionalized SiO2-Al2O3 mixed-oxide as a novel electrochemical sensor: application for the voltammetric determination of captopril,” Journal of Materials Chemistry, vol. 21, no. 38, pp. 15022–15030, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. A. A. Ensafi, H. Karimi-Maleh, S. Mallakpour, and M. Hatami, “Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide modified multiwall carbon nanotubes paste electrode,” Sensors and Actuators B, vol. 155, no. 2, pp. 464–472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Tavana, M. A. Khalilzadeh, H. Karimi-Maleh, A. A. Ensafi, H. Beitollahi, and D. Zareyee, “Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode,” Journal of Molecular Liquids, vol. 168, pp. 69–74, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Salmanpour, T. Tavana, A. Pahlavan et al., “Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode,” Materials Science and Engineering C, vol. 32, no. 7, pp. 1912–1918, 2012. View at Publisher · View at Google Scholar
  15. S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth,” Journal of Colloid and Interface Science, vol. 275, no. 2, pp. 496–502, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A.-T. Le, L. T. Tam, P. D. Tam et al., “Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity,” Materials Science and Engineering C, vol. 30, no. 6, pp. 910–916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. N. Nadagouda, T. F. Speth, and R. S. Varma, “Microwave-assisted green synthesis of silver nanostructures,” Accounts of Chemical Research, vol. 44, no. 7, pp. 469–478, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Y. Golubevaa, O. V. Shamova, D. S. Orlov, T. Y. Pazina, A. S. Boldina, and V. N. Kokryakov, “Study of antimicrobial and hemolytic activities of silver nanoparticles prepared by chemical reduction,” Glass Physics and Chemistry, vol. 36, no. 5, pp. 628–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Harada, C. Kawasaki, K. Saijo, M. Demizu, and Y. Kimura, “Photochemical synthesis of silver particles using water-in-ionic liquid microemulsions in high-pressure CO2,” Journal of Colloid and Interface Science, vol. 343, no. 2, pp. 537–545, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Li and F.-S. Zhang, “A novel approach for preparing silver nanoparticles under electron beam irradiation,” Journal of Nanoparticle Research, vol. 12, no. 4, pp. 1423–1428, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Zhu, S. Liu, O. Palchik, Y. Koltypin, and A. Gedanken, “Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods,” Langmuir, vol. 16, no. 16, pp. 6396–6399, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Bhayani, J. M. Rajwade, and K. M. Paknikar, “Radio frequency induced hyperthermia mediated by dextran stabilized LSMO nanoparticles—in vitro evaluation of heat shock protein response,” Nanotechnology, vol. 24, Article ID 015102, 2013. View at Google Scholar
  23. R. Umrani and K. M. Paknikar, “Zinc oxide nanoparticles show anti-diabetic activity in streptozotocin induced type 1 and type 2 diabetic rats,” Nanomedicine, 2013. View at Publisher · View at Google Scholar
  24. S. S. Shankar, A. Ahmad, and M. Sastry, “Geranium leaf assisted biosynthesis of silver nanoparticles,” Biotechnology Progress, vol. 19, no. 6, pp. 1627–1631, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. J. D. Oei, W. W. Zhao, L. Chu et al., “Antimicrobial acrylic materials with in situ generated silver nanoparticles,” Journal of Biomedical Materials Research B, vol. 100, no. 2, pp. 409–415, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. B. S. Atiyeh, M. Costagliola, S. N. Hayek, and S. A. Dibo, “Effect of silver on burn wound infection control and healing: review of the literature,” Burns, vol. 33, no. 2, pp. 139–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Mude, A. Ingle, A. Gade, and M. Rai, “Synthesis of silver nanoparticles using callus extract of Carica papaya—a first report,” Journal of Plant Biochemistry and Biotechnology, vol. 18, no. 1, pp. 83–86, 2009. View at Google Scholar · View at Scopus
  28. S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, “Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract,” Biotechnology Progress, vol. 22, no. 2, pp. 577–583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Huang, Q. Li, D. Sun et al., “Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf,” Nanotechnology, vol. 18, no. 10, Article ID 105104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Kouvaris, A. Delimitis, V. Zaspalis, D. Papadopoulos, S. A. Tsipas, and N. Michailidis, “Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract,” Materials Letters, vol. 76, pp. 18–20, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Lee, R. E. Cohen, and M. F. Rubner, “Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles,” Langmuir, vol. 21, no. 21, pp. 9651–9659, 2005. View at Publisher · View at Google Scholar · View at Scopus