Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013 (2013), Article ID 427158, 10 pages
http://dx.doi.org/10.1155/2013/427158
Research Article

The Reaction of Cyclopentanone with Cyanomethylene Reagents: Novel Synthesis of Pyrazole, Thiophene, and Pyridazine Derivatives

National Organization for Drug Control & Research, P.O. Box 29, Cairo, Egypt

Received 28 May 2013; Revised 1 September 2013; Accepted 6 September 2013

Academic Editor: Alexander Kornienko

Copyright © 2013 Wagnat W. Wardakhan and Eman M. Samir. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Pfau and H. Marquardt, “Cell transformation in vitro by food-derived heterocyclic amines Trp-P-1, Trp-P-2 and N2-OH-PhIP,” Toxicology, vol. 166, no. 1-2, pp. 25–30, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. V. P. Boyarskiy, K. V. Luzyanin, and V. Yu. Kukushkin, “Acyclic diaminocarbenes (ADCs) as a promising alternative to N-heterocyclic carbenes (NHCs) in transition metal catalyzed organic transformation,” Coordination Chemistry Reviews, vol. 256, no. 17-18, pp. 2029–2056, 2012. View at Publisher · View at Google Scholar
  3. R. K. Singh, N. Sinha, S. Jain, M. Salman, F. Naqvi, and N. Anand, “A convenient and new approach to the synthesis of ω-heterocyclic amino acids from carboxy lactams through ring-chain-transformation—part 2: synthesis of (2R)-/(2S)-2-aminomethyl-3-(1-aryl-/1,5-diaryl-1H-pyrazol-3-yl)- propionic acid,” Tetrahedron, vol. 61, no. 37, pp. 8868–8874, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Frenna, G. Macaluso, G. Consiglio, B. Cosimelli, and D. Spinelli, “Mononuclear heterocyclic rearrangements—part 16: kinetic study of the rearrangement of some ortho-substituted Z-phenylhydrazones of 3-benzoyl-5- phenyl-1,2,4-oxadiazole into 2-aryl-4-benzoylamino-5-phenyl- 1,2,3-triazoles in dioxane-water and in benzene,” Tetrahedron, vol. 55, no. 44, pp. 12885–12896, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. B. S. Jursic, F. Douelle, K. Bowdy, and E. D. Stevens, “A new facile method for preparation of heterocyclic α-iminonitriles and α-oxoacetic acid from heterocyclic aldehydes, p-aminophenol, and sodium cyanide,” Tetrahedron Letters, vol. 43, no. 30, pp. 5361–5365, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. K. V. Padoley, S. N. Mudliar, and R. A. Pandey, “Heterocyclic nitrogenous pollutants in the environment and their treatment options—an overview,” Bioresource Technology, vol. 99, no. 10, pp. 4029–4043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. W. Erian, S. M. Sheriff, A. A. Alassar, and Y. M. Elkholy, “β-Enaminonitriles in heterocyclic synthesis: a novel synthesis and transformations of α-substituted-β-enaminonitriles,” Tetrahedron, vol. 50, no. 6, pp. 1877–1884, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Bergman, S. Bergman, and T. Brimert, “Syntheses of gem-dinitro heterocyclic compounds, their ring-opening reactions and transformations into indoles, indazoles and benzoxazinones,” Tetrahedron, vol. 55, no. 34, pp. 10447–10466, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Fuentes, W. Moreda, C. Ortiz, I. Robina, and C. Welsh, “Partially protected D-glucopyranosyl isothiocyanates. Synthesis and transformations into thiourea and heterocyclic derivatives,” Tetrahedron, vol. 48, no. 31, pp. 6413–6424, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Buscemi, A. Pace, I. Pibiri, N. Vivona, and T. Caronna, “Fluorinated heterocyclic compounds: an assay on the photochemistry of some fluorinated 1-oxa-2-azoles: an expedient route to fluorinated heterocycles,” Journal of Fluorine Chemistry, vol. 125, no. 2, pp. 165–173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. R. Shaaban, T. S. Saleh, A. S. Mayhoub, A. Mansour, and A. M. Farag, “Synthesis and analgesic/anti-inflammatory evaluation of fused heterocyclic ring systems incorporating phenylsulfonyl moiety,” Bioorganic & Medicinal Chemistry, vol. 16, no. 12, pp. 6344–6352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. G. Rimoli, L. Avallone, P. de Caprariis et al., “Research on heterocyclic compounds. XXXVII. Synthesis and antiinflammatory activity of methyl-substituted imidazo[1,2-a]pyrazine derivatives,” European Journal of Medicinal Chemistry, vol. 32, no. 3, pp. 195–203, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Feng, K. W. Yang, L. S. Zhou et al., “N- heterocyclic dicarboxylic acids: broad-spectrum inhibitors of metallo-β-lactamases with co-antibacterial effect against antibiotic-resistant bacteria,” Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 16, pp. 5185–5189, 2012. View at Google Scholar
  14. S. Günal, N. Kaloğlu, İ. Özdemir, S. l Demir, and İ. Özdemir, “Novel benzimidazolium salts and their silver complexes: synthesis and antibacterial properties,” Inorganic Chemistry Communications, vol. 21, pp. 142–146, 2012. View at Publisher · View at Google Scholar
  15. S. K. Srivastava, W. Haq, and P. M. S. Chauhan, “Solid phase synthesis of structurally diverse pyrimido[4,5-d] pyrimidines for the potential use in combinatorial chemistry,” Bioorganic & Medicinal Chemistry Letters, vol. 9, no. 7, pp. 965–966, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Z. Li, Y. Li, X. G. Chen et al., “Synthesis and antitumor activity of heterocyclic acid ester derivatives of 20S-camptothecins,” Chinese Chemical Letters, vol. 18, no. 11, pp. 1335–1338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Li, Q. Yang, and X. Qian, “Novel heterocyclic family of phenyl naphthothiazole carboxamides derived from naphthalimides: synthesis, antitumor evaluation, and DNA photocleavage,” Bioorganic & Medicinal Chemistry, vol. 13, no. 9, pp. 3149–3155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. R. J. Pagliero, S. Lusvarghi, A. B. Pierini, R. Brun, and M. R. Mazzieri, “Synthesis, stereoelectronic characterization and antiparasitic activity of new 1-benzenesulfonyl-2-methyl-1,2,3,4-tetrahydroquinolines,” Bioorganic & Medicinal Chemistry, vol. 18, no. 1, pp. 142–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S.-F. Barbuceanu, G. Saramet, G. L. Almajan, C. Draghici, F. Barbuceanu, and G. Bancescu, “New heterocyclic compounds from 1,2,4-triazole and 1,3,4-thiadiazole class bearing diphenylsulfone moieties. Synthesis, characterization and antimicrobial activity evaluation,” European Journal of Medicinal Chemistry, vol. 49, pp. 417–423, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. A. D. Settimo, G. Primofiore, F. D. Settimo et al., “1-Substituted 2-benzylaminobenzimidazole derivatives: compounds with H1-antihistamine activity,” European Journal of Medicinal Chemistry, vol. 27, no. 4, pp. 395–400, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. A. E. Amr, M. H. Sherif, M. G. Assy, M. A. Al-Omar, and I. Ragab, “Antiarrhythmic, serotonin antagonist and antianxiety activities of novel substituted thiophene derivatives synthesized from 2-amino-4,5,6,7-tetrahydro-N- phenylbenzo[b]thiophene-3-carboxamide,” European Journal of Medicinal Chemistry, vol. 45, no. 12, pp. 5935–5942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Bányász, J. Magyar, A. Varró et al., “EGIS-7229, the new combined class III antiarrhythmic agent Lack of EAD inducing effect,” General Pharmacology, vol. 32, no. 3, pp. 329–333, 1999. View at Publisher · View at Google Scholar
  23. D. M. Swanson, C. R. Shah, B. Lord et al., “Heterocyclic replacement of the central phenyl core of diamine-based histamine H3 receptor antagonists,” European Journal of Medicinal Chemistry, vol. 44, no. 11, pp. 4413–4425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. M. Mohareb and F. O. Al-farouk, “Anti-Tumor and anti-Leishmanial evaluations of novel thiophene derivatives derived from the reaction of cyclopentanone with elemental sulphur and cyano-methylene reagents,” Organic Chemistry, vol. 1, pp. 1–6, 2012. View at Google Scholar
  25. W. W. Wardakhan, E. S. N. Eid, and R. M. Mohareb, “Synthesis and anti-tumor evaluation of novel hydrazide and hydrazide-hydrazone derivatives,” Acta Pharmaceutica, vol. 63, no. 1, pp. 45–57, 2013. View at Google Scholar
  26. W. W. Wardakhan and E. M. Samir, “New approches for the synthesis of hydrazone derivatives and their antitumor evaluation,” Journal of the Chilean Chemical Society, vol. 58, no. 2, pp. 827–830, 2010. View at Google Scholar