Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 545760, 7 pages
http://dx.doi.org/10.1155/2013/545760
Research Article

Analysis of Volatile Components of Adenosma indianum (Lour.) Merr. by Steam Distillation and Headspace Solid-Phase Microextraction

School of Chemistry and Environment, South China Normal University, Guangzhou 510631, China

Received 2 May 2013; Revised 24 August 2013; Accepted 2 September 2013

Academic Editor: Zenilda L. Cardeal

Copyright © 2013 Zhi Zeng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. C. Wen, C. Y. Huang, and F. L. Lu, “Determination of baicalin and puerarin in traditional Chinese medicinal preparations by high-performance liquid chromatography,” Journal of Chromatography, vol. 631, no. 1-2, pp. 241–250, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. National Bureau of Traditional Chinese Medicine Editorial Board of Chinese Materia Medica, Chinese Meteria Medica, Shanghai Scientific & Technical Publishers, Shanghai, China, 2002.
  3. Jiangsu New Medical College, Great Dictionary of Chinese Materia Medica, Shanghai Scientific & Technical Publishers, Shanghai, China, 1997.
  4. X. D. Ji and Q. L. Pu, “Studies on the components of the essential oil from Adenosma ndianum (Lour.),” Acta Botanica Sinica, vol. 27, pp. 80–83, 1985. View at Google Scholar
  5. Q. K. Ya, W. J. Lu, J. Y. Chen, and X. Tan, “GC-MS analysis of the chemical constituent of volatile oil from Zhuang drug Adenosma indianum (Lour.) Merr,” Chinese Journal of Pharmaceutical Analysis, vol. 31, pp. 544–546, 2011. View at Google Scholar
  6. Y. Huang, H. E. Wu, Z. Y. Wei, Y. F. Xiao, and X. L. Yu, “Chemical constituents and anti-bacterial activity of essential oil form Adenosma indianum,” Chinese Journal of Experimental Traditional Medical Formulae, vol. 17, pp. 79–82, 2011. View at Google Scholar
  7. H. E. Wu, C. Y. Liang, Y. H. Li, X. Q. Huang, and X. Y. Zhu, “GC-MS analysis of chemical constituents of the essential oil from Adenosma indianum (Lour.) Merr. by different extraction methods,” Chinese Journal of Pharmaceutical Analysis, vol. 30, pp. 1941–1946, 2010. View at Google Scholar
  8. Z. G. Li, M. R. Lee, and D. L. Shen, “Analysis of volatile compounds emitted from fresh Syringa oblata flowers in different florescence by headspace solid-phase microextraction-gas chromatography-mass spectrometry,” Analytica Chimica Acta, vol. 576, no. 1, pp. 43–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Belliardo, C. Bicchi, C. Cordero et al., “Headspace-solid-phase microextraction in the analysis of the volatile fraction of aromatic and medicinal plants,” Journal of Chromatographic Science, vol. 44, no. 7, pp. 416–429, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. B. Xiao, J. C. Zhu, T. Feng et al., “Comparison of volatile components in Chinese traditional pickled peppers using HS-SPME-GC-MS, GC-O and multivariate analysis,” Natural Product Research, vol. 24, no. 20, pp. 1939–1953, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Zhang, M. L. Qi, Q. L. Shao, S. Zhou, and R. N. Fu, “Analysis of the volatile compounds in Ligusticum chuanxiong Hort. using HS-SPME-GC-MS,” Journal of Pharmaceutical and Biomedical Analysis, vol. 44, no. 2, pp. 464–470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Di, R. A. Shellie, P. J. Marriott, and C. W. Huie, “Application of headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography (GC × GC) for the chemical profiling of volatile oils in complex herbal mixtures,” Journal of Separation Science, vol. 27, no. 5-6, pp. 451–458, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Bozalongo, J. D. Carrillo, M. Á. F. Torroba, and M. T. Tena, “Analysis of French and American oak chips with different toasting degrees by headspace solid-phase microextraction-gas chromatography-mass spectrometry,” Journal of Chromatography A, vol. 1173, no. 1-2, pp. 10–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Pawliszyn, Solid Phase Microextraction: Theory and Practice, Wiley-VCH Press, New York, NY, USA, 1997.
  15. J. Pawliszyn, Applications of Solid Phase Microextraction, The Royal Society of Chemistry Press, Cambridge, UK, 1999.
  16. B. Zygmunt, A. Jastrzȩbska, and J. Namieśnik, “Solid phase microextraction: a convenient tool for the determination of organic pollutants in environmental matrices,” Critical Reviews in Analytical Chemistry, vol. 31, no. 1, pp. 1–18, 2001. View at Google Scholar · View at Scopus
  17. Z. Zeng, R. Xie, T. Zhang, H. Zhang, and J. Y. Chen, “Analysis of volatile compositions of Magnolia biondii pamp by steam distillation and headspace solid phase micro-extraction,” Journal of Oleo Science, vol. 60, no. 12, pp. 591–596, 2011. View at Google Scholar · View at Scopus
  18. C. A. Zini, T. F. de Assis, E. B. Ledford Jr. et al., “Correlations between pulp properties of eucalyptus clones and leaf volatiles using automated solid-phase microextraction,” Journal of Agricultural and Food Chemistry, vol. 51, no. 27, pp. 7848–7853, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Vaz, “Screening direct analysis of PAHs in atmospheric particulate matter with SPME,” Talanta, vol. 60, no. 4, pp. 687–693, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. W. M. Mullett, K. Levsen, J. Borlak, J. C. Wu, and J. Pawliszyn, “Automated in-tube solid-phase microextraction coupled with HPLC for the determination of N-nitrosamines in cell cultures,” Analytical Chemistry, vol. 74, no. 7, pp. 1695–1701, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. C. A. Zini, H. Lord, E. Christensen, T. F. de Assis, E. B. Caramão, and J. Pawliszyn, “Automation of solid-phase microextraction-gas chromatography-mass spectrometry extraction of eucalyptus volatiles,” Journal of Chromatographic Science, vol. 40, no. 3, pp. 140–146, 2002. View at Google Scholar · View at Scopus
  22. P. J. Watkins, G. Rose, R. D. Warner, F. R. Dunshea, and D. W. Pethick, “A comparison of solid-phase microextraction (SPME) with simultaneous distillation-extraction (SDE) for the analysis of volatile compounds in heated beef and sheep fats,” Meat Science, vol. 91, no. 2, pp. 99–107, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Moreno, A. Fita, M. C. González-Mas, and A. Rodríguez-Burruezo, “HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit,” Scientia Horticulturae, vol. 135, pp. 87–97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Basaglia and M. C. Pietrogrande, “Optimization of a SPME/GC/MS method for the simultaneous determination of pharmaceuticals and personal care products in waters,” Chromatographia, vol. 75, no. 7-8, pp. 361–370, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. J. B. Lin, X. J. Shi, H. L. Liu, and K. Yuan, “Analysis of chemical constituents of the volatile oil in the different parts of okra by SPME-GC/MS,” Asian Journal of Chemistry, vol. 24, no. 3, pp. 1309–1312, 2012. View at Google Scholar
  26. I. Gokbulut and I. Karabulut, “SPME-GC-MS detection of volatile compounds in apricot varieties,” Food Chemistry, vol. 132, no. 2, pp. 1098–1102, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Khani and S. Imani, “Development of HS-SPME/GC-MS method for analysis of fenitrothion residues in wheat,” Annals of Biological Research, vol. 3, pp. 236–239, 2012. View at Google Scholar
  28. M. A. Rather, B. A. Dar, S. N. Sofi et al., “Headspace solid phase microextraction (HS-SPME ) gas chromatography mass spectrometric analysis of the volatile constituents of Cannabis sativa L. from Kashmir,” Journal of Pharmacy Research, vol. 4, pp. 2651–2653, 2011. View at Google Scholar
  29. O. Mastrogianni, G. Theodoridis, K. Spagou et al., “Determination of venlafaxine in post-mortem whole blood by HS-SPME and GC-NPD,” Forensic Science International, vol. 215, no. 1–3, pp. 105–109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Vas and K. Vékey, “Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis,” Journal of Mass Spectrometry, vol. 39, no. 3, pp. 233–254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. National Committee of Pharmacopoeia, Pharmacopoeia of the People's Republic of China, appendix 63, Chinese Medical Science and Technology Press, Beijing, China, 2010.
  32. L. S. Cai, J. A. Koziel, J. Davis, Y. C. Lo, and H. W. Xin, “Characterization of volatile organic compounds and odors by in-vivo sampling of beef cattle rumen gas, by solid-phase microextraction, and gas chromatography-mass spectrometry-olfactometry,” Analytical and Bioanalytical Chemistry, vol. 386, no. 6, pp. 1791–1802, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. R. P. Adams, Identification of Essential Oils by Ion Trap Mass Spectroscopy, Academic Press, New York, NY, USA, 1989.
  34. S. Hamm, J. Bleton, J. Connan, and A. Tchapla, “A chemical investigation by headspace SPME and GC-MS of volatile and semi-volatile terpenes in various olibanum samples,” Phytochemistry, vol. 66, no. 12, pp. 1499–1514, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Sefidkon and R. Kalvandi, “Chemical composition of the essential oil of Micromeria persica Boiss. from Iran,” Flavour and Fragrance Journal, vol. 20, no. 5, pp. 539–541, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Zeng, H. Zhang, T. Zhang, S. Tamogami, and J. Y. Chen, “Screening for γ-nonalactone in the headspace of freshly cooked non-scented rice using SPME/GC-O and SPME/GC-MS,” Molecules, vol. 14, no. 8, pp. 2927–2934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Zrira, A. Elamrani, and B. Benjilali, “Chemical composition of the essential oil of Pistacia lentiscus L. from Morocco—a seasonal variation,” Flavour and Fragrance Journal, vol. 18, no. 6, pp. 475–480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Zeng, H. Zhang, J. Y. Chen et al., “Direct extraction of volatiles of rice during cooking using solid-phase microextraction,” Cereal Chemistry, vol. 84, no. 5, pp. 423–427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Zeng, H. Zhang, T. Zhang, S. Tamogami, and J. Y. Chen, “Analysis of flavor volatiles of glutinous rice during cooking by combined gas chromatography-mass spectrometry with modified headspace solid-phase micro-extraction method,” Journal of Food Composition and Analysis, vol. 22, no. 4, pp. 347–353, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Sefidkon and Z. Jamzad, “Essential oil analysis of Iranian Satureja edmondi and S. isophylla,” Flavour and Fragrance Journal, vol. 21, no. 2, pp. 230–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Askari and F. Sefidkon, “Essential oil composition of Pimpinella affinis Ledeb. from two localities in Iran,” Flavour and Fragrance Journal, vol. 21, no. 5, pp. 754–756, 2006. View at Publisher · View at Google Scholar · View at Scopus