Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013 (2013), Article ID 576370, 9 pages
http://dx.doi.org/10.1155/2013/576370
Research Article

Modified Chitosan-Clay Nanocomposite as a Drug Delivery System Intercalation and In Vitro Release of Ibuprofen

1Biology Department, King Khalid University, Saudi Arabia
2Department of Chemistry, Polymer Research Group, Faculty of Science, Tanta University, Egypt

Received 3 April 2013; Accepted 6 September 2013

Academic Editor: Ali Nokhodchi

Copyright © 2013 Rehab Abdeen and Nehal Salahuddin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. V. Joshi, B. D. Kevadiya, H. A. Patel, H. C. Bajaj, and R. V. Jasra, “Montmorillonite as a drug delivery system: intercalation and in vitro release of timolol maleate,” International Journal of Pharmaceutics, vol. 374, no. 1-2, pp. 53–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. G. Wilson, N. Washington, J. L. Greaves et al., “Bimodal release of ibuprofen in a sustained-release formulation: a scintigraphic and pharmacokinetic open study in healthy volunteers under different conditions of food intake,” International Journal of Pharmaceutics, vol. 50, no. 2, pp. 155–161, 1989. View at Google Scholar · View at Scopus
  3. A. G. G. Gilman, L. S. Goodman, T. W. Rall, and F. Murad, The Pharmacological Basis of Therapeutics, Macmillan, New York, NY, USA, 7th edition, 1985.
  4. W. Diamantis, J. Melton, R. D. Sofia, and V. B. Ciofalo, “Comparative gastric ulcerogenic effects of meseclazone, 5-chlorosalicylic acid and other nonsteroidal anti-inflammatory drugs following acute and repeated oral administration to rats,” Toxicology and Applied Pharmacology, vol. 52, no. 3, pp. 454–461, 1980. View at Google Scholar · View at Scopus
  5. R. Bodmeier and H. Chen, “Preparation and characterization of microspheres containing the anti-inflammatory agents, indomethacin, ibuprofen, and ketoprofen,” Journal of Controlled Release, vol. 10, no. 2, pp. 167–175, 1989. View at Google Scholar · View at Scopus
  6. J. A. Bakan, T. C. Powell, and P. S. Szotac, “Recent advances imicroencapsulation of drugs to obtain reduced gastric irritation,” in Microcapsules and Nanocapsules in Medicine and Pharmacy, M. Donbrow, Ed., pp. 183–192, CRC Press, Boca Raton, Fla, USA, 1992. View at Google Scholar
  7. E. Leo, F. Forni, and M. T. Bernabei, “Surface drug removal from ibuprofen-loaded PLA microspheres,” International Journal of Pharmaceutics, vol. 196, no. 1, pp. 1–9, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Sipahigil and B. Dortunç, “Preparation and in vitro evaluation of verapamil HCl and ibuprofen containing carrageenan beads,” International Journal of Pharmaceutics, vol. 228, no. 1-2, pp. 119–128, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. B. C. Arica, S. alis, H. S. Kas, and A. A. Hincal, “Chitosan microspheres of ibuprofen: evaluation and in vitro characterization,” in Chitosan in Pharmacy and Chemistry, R. A. A. Muzzarelli and C. Muzzarelli, Eds., pp. 71–76, Atec, Italy, 2002. View at Google Scholar
  10. S. L. De Guevara-Fernández, C. V. Ragel, and M. Vallet-Regí, “Bioactive glass-polymer materials for controlled release of ibuprofen,” Biomaterials, vol. 24, no. 22, pp. 4037–4043, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Saravanan, K. Bhaskar, G. Srinivasa Rao, and M. D. Dhanaraju, “Ibuprofen-loaded ethylcellulose/polystyrene microspheres: an approach to get prolonged drug release with reduced burst effect and low ethylcellulose content,” Journal of Microencapsulation, vol. 20, no. 3, pp. 289–302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Segi, T. Yotsuyanagi, and K. Ikeda, “Interaction of calcium-induced gelation of alginic acid and pH-sensitive reswelling of dried gels,” Chemical Pharmaceutical Bulletin, vol. 37, pp. 3092–3095, 1989. View at Google Scholar
  13. S. Çalis, B. Arica, P. Atilla, T. Durlu, N. Çakar, and A. A. Hincal, “Effect of ibuprofen and ibuprofen incorporated biodegradable alginate beads on gastric and duodenal mucosa (a comparative histological study),” in Proceedings of the 30th Annual Meeting of Controlled Release Society, pp. 495–501, Glasgow, UK, July, 2003.
  14. B. J. Lee, J. H. Cui, T. W. Kim, M. Y. Heo, and C. K. Kim, “Biphasic release characteristics of dual drug-loaded alginate beads,” Archives of Pharmacal Research, vol. 21, no. 6, pp. 645–650, 1998. View at Google Scholar · View at Scopus
  15. T. W. Wong, L. W. Chan, S. B. Kho, and P. W. Sia Heng, “Design of controlled-release solid dosage forms of alginate and chitosan using microwave,” Journal of Controlled Release, vol. 84, no. 3, pp. 99–114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Kong, X. G. Chen, K. Xing, and H. J. Park, “Antimicrobial properties of chitosan and mode of action: a state of the art review,” International Journal of Food Microbiology, vol. 144, no. 1, pp. 51–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Khalil, D. Mahajan, and M. Rafailovich, “Polymer-montmorillonite clay nanocomposites. Part 1: complexation of montmorillonite clay with a vinyl monomer,” Polymer International, vol. 54, no. 2, pp. 423–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Wang, Y. Du, and J. Luo, “Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity,” Nanotechnology, vol. 19, no. 6, Article ID 065707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Mohanambe and S. Vasudevan, “Anionic clays containing anti-inflammatory drug molecules: comparison of molecular dynamics simulation and measurements,” Journal of Physical Chemistry B, vol. 109, no. 32, pp. 15651–15658, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. P. Zheng, L. Luan, H. Y. Wang, L. F. Xi, and K. D. Yao, “Study on ibuprofen/montmorillonite intercalationcomposites as drug release system,” Applied Clay Science, vol. 36, no. 4, pp. 297–301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. J. Samuels, “Solid state characterization of the structure of chitosan film,” Polymer Science, vol. 19, no. 7, pp. 1081–1105, 1981. View at Publisher · View at Google Scholar
  22. K. Ogawa, T. Yui, and M. Miya, “Dependence on the preparation procedure of the polymorphism and crystallinity of chitosan membranes,” Bioscience, Biotechnology, and Biochemistry, vol. 56, no. 6, pp. 858–862, 1992. View at Google Scholar
  23. C. S. Hutchison, Laboratory Hand Book of Pertrographic Techniques, Wiley, New York, NY, USA, 1974.
  24. K. Kofuji, H. Akamine, C. J. Qian et al., “Therapeutic efficacy of sustained drug release from chitosan gel on local inflammation,” International Journal of Pharmaceutics, vol. 272, no. 1-2, pp. 65–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. L. González-Rodríguez, M. A. Holgado, C. Sánchez-Lafuente, A. M. Rabasco, and A. Fini, “Alginate/chitosan particulate systems for sodium diclofenac release,” International Journal of Pharmaceutics, vol. 232, no. 1-2, pp. 225–234, 2002. View at Publisher · View at Google Scholar · View at Scopus