Journal of Chemistry
Volume 2013 (2013), Article ID 585920, 7 pages
http://dx.doi.org/10.1155/2013/585920
Research Article
Photosensitization of Colloidal SnO2 Semiconductor Nanoparticles with Xanthene Dyes
School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
Received 2 May 2013; Revised 18 September 2013; Accepted 19 September 2013
Academic Editor: Veysel T. Yilmaz
Copyright © 2013 N. Nagarajan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- J. Moser and M. Gratzel, “Photosensitized electron injection in colloidal semiconductors,” Journal of the American Chemical Society, vol. 106, pp. 6557–6564, 1984. View at Publisher · View at Google Scholar
- C. D. Jaeger, F.-R. F. Fan, and A. J. Bard, “Semiconductor electrodes. 26. Spectral sensitization of semiconductors with phthalocyanine,” Journal of the American Chemical Society, vol. 102, no. 8, pp. 2592–2598, 1980. View at Google Scholar · View at Scopus
- E. K. Putseiko and A. N. Terenin, “Photosensitization of the internal photoeffect in zinc oxide and other semiconductors by adsorbed dyes,” Zhurnal Fizicheskoi Khimii, vol. 23, p. 676, 1949. View at Google Scholar
- S. Ferrere, A. Zaban, and B. A. Gregg, “Dye sensitization of nanocrystalline tin oxide by perylene derivatives,” Journal of Physical Chemistry B, vol. 101, no. 23, pp. 4490–4493, 1997. View at Google Scholar · View at Scopus
- S. Ferrere and B. A. Gregg, “Large increases in photocurrents and solar conversion efficiencies by UV illumination of dye sensitized solar cells,” Journal of Physical Chemistry B, vol. 105, no. 32, pp. 7602–7605, 2001. View at Publisher · View at Google Scholar · View at Scopus
- H. Tian, P.-H. Liu, W. Zhu, E. Gao, D.-J. Wu, and S. Cai, “Synthesis of novel multi-chromophoric soluble perylene derivatives and their photosensitizing properties with wide spectral response for SnO2 nanoporous electrode,” Journal of Materials Chemistry, vol. 10, no. 12, pp. 2708–2715, 2000. View at Publisher · View at Google Scholar · View at Scopus
- P. Thangadurai, A. C. Bose, S. Ramasamy, R. Kesavamoorthy, and T. R. Ravindran, “High Pressure effects on electrical resistivity and dielectric properties of nanocrystalline SnO2,” Journal of Physics and Chemistry of Solids, vol. 66, no. 10, pp. 1621–1627, 2005. View at Publisher · View at Google Scholar · View at Scopus
- J. A. Toledo-Antonio, R. Gutiérrez-Baez, P. J. Sebastian, and A. Vázquez, “Thermal stability and structural deformation of rutile SnO2 nanoparticles,” Journal of Solid State Chemistry, vol. 174, no. 2, pp. 241–248, 2003. View at Publisher · View at Google Scholar · View at Scopus
- A. Y. El-Etre and S. M. Reda, “Characterization of nanocrystalline SnO2 thin film fabricated by electrodeposition method for dye-sensitized solar cell application,” Applied Surface Science, vol. 256, no. 22, pp. 6601–6606, 2010. View at Publisher · View at Google Scholar · View at Scopus
- N. Boens, W. Qin, N. Basarić, A. Orte, E. M. Talavera, and J. M. Alvarez-Pez, “Photophysics of the fluorescent pH indicator BCECF,” Journal of Physical Chemistry A, vol. 110, no. 30, pp. 9334–9343, 2006. View at Publisher · View at Google Scholar · View at Scopus
- R. P. Haugland, Handbook of Fluorescent Probes and Research Products, Molecular Probes, Eugene, Ore, USA, 9th edition, 2002.
- A. Zumbuehl, D. Jeannerat, S. E. Martin et al., “An amphotericin B-Fluorescein conjugate as a powerful probe for biochemical studies of the membrane,” Angewandte Chemie International Edition, vol. 43, no. 39, pp. 5181–5185, 2004. View at Publisher · View at Google Scholar
- D. C. Neckers and O. M. V. Aguilera, “Photochemistry of the xanthene dyes,” in Advances in Photochemistry, D. H. Volman, G. S. Hammond, and D. C. Neckers, Eds., vol. 18, pp. 313–394, 1993. View at Google Scholar
- O. Shimizu, J. Watanabe, S. Naito, and Y. Shibata, “Quenching mechanism of rose bengal triplet state involved in photosensitization of oxygen in ethylene glycol,” Journal of Physical Chemistry A, vol. 110, no. 5, pp. 1735–1739, 2006. View at Publisher · View at Google Scholar · View at Scopus
- M. H. V. Werts, J. W. Verhoeven, and J. W. Hofstraat, “Efficient visible light sensitisation of water-soluble near-infrared luminescent lanthanide complexes,” Journal of the Chemical Society, no. 3, pp. 433–439, 2000. View at Google Scholar · View at Scopus
- V. Balzani, P. Ceroni, S. Gestermann, M. Gorka, C. Kauffmann, and F. Vögtle, “Fluorescent guests hosted in fluorescent dendrimers,” Tetrahedron, vol. 58, no. 4, pp. 629–637, 2002. View at Publisher · View at Google Scholar · View at Scopus
- M. H. Lim, B. A. Wong, W. H. Pitcock Jr., D. Mokshagundam, M.-H. Baik, and S. J. Lippard, “Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes,” Journal of the American Chemical Society, vol. 128, no. 44, pp. 14364–14373, 2006. View at Publisher · View at Google Scholar · View at Scopus
- H. Maeda, K. Yamamoto, Y. Nomura et al., “A design of fluorescent probes for superoxide based on a nonredox mechanism,” Journal of the American Chemical Society, vol. 127, no. 1, pp. 68–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
- C. R. Schröder, B. M. Weidgans, and I. Klimant, “pH fluorosensors for use in marine systems,” Analyst, vol. 130, no. 6, pp. 907–916, 2005. View at Publisher · View at Google Scholar · View at Scopus
- N. Nakayama-Ratchford, S. Bangsaruntip, X. Sun, K. Welsher, and H. Dai, “Noncovalent functionalization of carbon nanotubes by fluorescein- polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence,” Journal of the American Chemical Society, vol. 129, no. 9, pp. 2448–2449, 2007. View at Publisher · View at Google Scholar · View at Scopus
- H. F. Gao, C. C. Wang, W. L. Yang, and S. K. Fu, “Preparation of a water-soluble fluorescent polymer,” Journal of Macromolecular Science A, vol. 41, no. 4, pp. 357–371, 2004. View at Google Scholar
- N. O. McHedlov-Petrossyan, N. A. Vodolazkaya, Y. A. Gurina, W.-C. Sun, and K. R. Gee, “Medium effects on the prototropic equilibria of fluorescein fluoro derivatives in true and organized solution,” Journal of Physical Chemistry B, vol. 114, no. 13, pp. 4551–4564, 2010. View at Publisher · View at Google Scholar · View at Scopus
- J. Pernak, A. Świerczyńska, F. Walkiewicz, E. Krystkowiak, and A. Maciejewski, “Long alkyl chain bis-quaternary ammonium-based ionic liquids as biologically active xanthenes dyes,” Journal of the Brazilian Chemical Society, vol. 20, no. 5, pp. 839–845, 2009. View at Google Scholar
- M. Ali, V. Kumar, and S. Pandey, “Unusual fluorescein prototropism within aqueous acidic 1-butyl-3-methylimidazolium tetrafluoroborate solution,” Chemical Communications, vol. 46, no. 28, pp. 5112–5114, 2010. View at Publisher · View at Google Scholar · View at Scopus
- M. Ali, P. Dutta, and S. Pandey, “Effect of ionic liquid on prototropic and solvatochromic behavior of fluorescein,” Journal of Physical Chemistry B, vol. 114, no. 46, pp. 15042–15051, 2010. View at Publisher · View at Google Scholar · View at Scopus
- A. Kathiravan and R. Renganathan, “Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins,” Journal of Colloid and Interface Science, vol. 331, no. 2, pp. 401–407, 2009. View at Publisher · View at Google Scholar · View at Scopus
- M. A. Jhonsi and R. Renganathan, “Investigations on the photoinduced interaction of water soluble thioglycolic acid (TGA) capped CdTe quantum dots with certain porphyrins,” Journal of Colloid and Interface Science, vol. 344, no. 2, pp. 596–602, 2010. View at Publisher · View at Google Scholar · View at Scopus
- L. Jiang, G. Sun, Z. Zhou et al., “Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts,” Journal of Physical Chemistry B, vol. 109, no. 18, pp. 8774–8778, 2005. View at Publisher · View at Google Scholar · View at Scopus
- E. J. H. Lee, C. Ribeiro, T. R. Giraldi, E. Longo, E. R. Leite, and J. A. Varela, “Photoluminescence in quantum-confined SnO2 nanocrystals: evidence of free exciton decay,” Applied Physics Letters, vol. 84, no. 10, pp. 1745–1747, 2004. View at Google Scholar · View at Scopus
- P. V. Kamat, J.-P. Chauvet, and R. W. Fessenden, “Photoelectrochemistry in particulate systems. 4. Photosensitization of a TiO2 semiconductor with a chlorophyll analogue,” Journal of Physical Chemistry, vol. 90, no. 7, pp. 1389–1394, 1986. View at Google Scholar · View at Scopus
- P. V. Kamat, “Photoelectrochemistry in particulate systems. 9. Photosensitized reduction in a colloidal titania system using anthracene-9-carboxylate as the sensitizer,” Journal of Physical Chemistry, vol. 93, no. 2, pp. 859–864, 1989. View at Publisher · View at Google Scholar
- J. Choi, K. Yeo, M. Yoon, S. J. Lee, and K. Kim, “Photoinduced intramolecular charge-transfer state of p-dimethylaminobenzoic acid in CdS and TiO2 colloid solutions,” Journal of Photochemistry and Photobiology A, vol. 132, no. 1-2, pp. 105–114, 2000. View at Publisher · View at Google Scholar
- P. V. Kamat, S. Das, K. G. Thomas, and M. V. George, “Ultrafast photochemical events associated with the photosensitization properties of a squaraine dye,” Chemical Physics Letters, vol. 178, no. 1, pp. 75–79, 1991. View at Publisher · View at Google Scholar
- J. Keizer, “Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots,” Journal of the American Chemical Society, vol. 105, no. 6, pp. 1494–1498, 1983. View at Publisher · View at Google Scholar
- J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, NewYork, NY, USA, 1986.
- J.-M. Wu and C.-H. Kuo, “Ultraviolet photodetectors made from SnO2 nanowires,” Thin Solid Films, vol. 517, no. 14, pp. 3870–3873, 2009. View at Publisher · View at Google Scholar · View at Scopus
- G. J. Kavarnos and N. J. Turro, “Photosensitization by reversible electron transfer: theories, experimental evidence, and examples,” Chemical Reviews, vol. 86, no. 3, pp. 401–449, 1986. View at Google Scholar · View at Scopus
- S. Parret, F. M. Savary, J. P. Fouassier, and P. Ramamurthy, “Spin-orbit-coupling-induced triplet formation of triphenylpyrylium ion: a flash photolysis study,” Journal of Photochemistry and Photobiology A, vol. 83, no. 3, pp. 205–209, 1994. View at Google Scholar · View at Scopus
- S. Nath, H. Pal, D. K. Palit, A. V. Sapre, and J. P. Mittal, “Steady-state and time-resolved studies on photoinduced interaction of phenothiazine and 10-methylphenothiazine with chloroalkanes,” Journal of Physical Chemistry A, vol. 102, no. 29, pp. 5822–5830, 1998. View at Google Scholar · View at Scopus