Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 631421, 6 pages
http://dx.doi.org/10.1155/2013/631421
Review Article

Fluorescent DNA Stabilized Silver Nanoclusters as Biosensors

Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad de Nanobiotecnología”, 28049 Madrid, Spain

Received 26 April 2013; Accepted 18 June 2013

Academic Editor: Eugen Stulz

Copyright © 2013 Alfonso Latorre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Chang, Y. Wang, and J. Li, “Electrochemical DNA sensors: from nanoconstruction to biosensing,” Current Organic Chemistry, vol. 15, no. 4, pp. 506–517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. Gorodetsky, M. C. Buzzeo, and J. K. Barton, “DNA-mediated electrochemistry,” Bioconjugate Chemistry, vol. 19, no. 12, pp. 2285–2296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. L. L. Li, P. Ge, P. R. Selvin, and Y. Lu, “Direct detection of adenosine in undiluted serum using a luminescent aptamer sensor attached to a terbium complex,” Analatical Chemistry, vol. 84, no. 18, pp. 7852–7856, 2012. View at Google Scholar
  4. H. Huang, Y. Tan, J. Shi, G. Liang, and J. Zhu, “DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence,” Nanoscale, vol. 2, no. 4, pp. 606–612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Spadavecchia, A. Barras, J. Lyskawa et al., “Approach for plasmonic based DNA sensing: amplification of the wavelength shift and simultaneous detection of the plasmon modes of gold nanostructures,” Analytical Chemistry, vol. 85, no. 6, pp. 3288–3296, 2013. View at Google Scholar
  6. G. Pelossof, R. Tel-Vered, X. Liu, and I. Willner, “Amplified surface plasmon resonance based DNA biosensors, aptasensors, and Hg2+ sensors using hemin/G-quadruplexes and Au nanoparticles,” Chemistry, vol. 17, no. 32, pp. 8904–8912, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Wang, J. Li, S. Song, D. Li, and C. Fan, “Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles,” Journal of Physics D, vol. 42, no. 20, Article ID 203001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Huang, C. Niu, X. Wang, X. Lu, and G. Zeng, “‘Turn-on’ fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn: CdS/ZnS quantum dots and gold nanoparticles by time-gated mode,” Analytical Chemistry, vol. 85, no. 2, pp. 1164–1170, 2013. View at Google Scholar
  9. T. Tokunaga, S. Namiki, K. Yamada et al., “Cell surface-anchored fluorescent aptamer sensor enables imaging of chemical transmitter dynamics,” Journal of the American Chemistry Society, vol. 134, no. 23, pp. 9561–9564, 2012. View at Google Scholar
  10. X. J. Xing, X. G. Liu, L. Yue-He, Q. Y. Luo, H. W. Tang, and D. W. Pang, “Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate,” Biosensors & Bioelectronics, vol. 37, no. 1, pp. 61–67, 2012. View at Google Scholar
  11. A. Latorre and Á. Somoza, “DNA-mediated silver nanoclusters: synthesis, properties and applications,” ChemBioChem, vol. 13, no. 7, pp. 951–958, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Han and E. Wang, “DNA-templated fluorescent silver nanoclusters,” Analytical and Bioanalytical Chemistry, vol. 402, no. 1, pp. 129–138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Zheng, P. R. Nicovich, and R. M. Dickson, “Highly fluorescent noble-metal quantum dots,” Annual Review of Physical Chemistry, vol. 58, pp. 409–431, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Sharma, R. C. Rocha, M. L. Phipps et al., “A DNA-templated fluorescent silver nanocluster with enhanced stability,” Nanoscale, vol. 4, no. 14, pp. 4107–4110, 2012. View at Google Scholar
  15. S. Choi, J. Yu, S. A. Patel, Y. Tzeng, and R. M. Dickson, “Tailoring silver nanodots for intracellular staining,” Photochemical and Photobiological Sciences, vol. 10, no. 1, pp. 109–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Sengupta, C. M. Ritchie, J. G. Buckman, K. R. Johnsen, P. M. Goodwin, and J. T. Petty, “Base-directed formation of fluorescent silver clusters,” Journal of Physical Chemistry C, vol. 112, no. 48, pp. 18776–18782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Mattoussi, G. Palui, and H. B. Na, “Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes,” Advanced Drug Delivery Reviews, vol. 64, no. 2, pp. 138–166, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Wang, W. B. Tan, Y. Zhang, X. Fan, and M. Wang, “Luminescent nanomaterials for biological labelling,” Nanotechnology, vol. 17, no. 1, pp. R1–R13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Waggoner, “Fluorescent labels for proteomics and genomics,” Current Opinion in Chemical Biology, vol. 10, no. 1, pp. 62–66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. T. Wirges, J. Timper, M. Fischler et al., “Controlled nucleation of DNA metallization,” Angewandte Chemie, vol. 48, no. 1, pp. 219–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Ono, S. Cao, H. Togashi et al., “Specific interactions between silver(i) ions and cytosine-cytosine pairs in DNA duplexes,” Chemical Communications, no. 39, pp. 4825–4827, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. A. Megger and J. Müller, “Silver(I)-mediated cytosine self-pairing is preferred over hoogsteen-type base pairs with the artificial nucleobase 1,3-dideaza-6-nitropurine,” Nucleosides, Nucleotides and Nucleic Acids, vol. 29, no. 1, pp. 27–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Sengupta, K. Springer, J. G. Buckman et al., “DNA templates for fluorescent silver clusters and i-motif folding,” Journal of Physical Chemistry C, vol. 113, no. 45, pp. 19518–19524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Deng, Z. Zhou, J. Li, T. Li, and S. Dong, “Fluorescent silver nanoclusters in hybridized DNA duplexes for the turn-on detection of Hg2+ ions,” Chemical Communications, vol. 47, no. 39, pp. 11065–11067, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Chen, G. Lan, and H. Chang, “Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions,” Analytical Chemistry, vol. 83, no. 24, pp. 9450–9455, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Lan, W. Chen, and H. Chang, “Characterization and application to the detection of single-stranded DNA binding protein of fluorescent DNA-templated copper/silver nanoclusters,” Analyst, vol. 136, no. 18, pp. 3623–3628, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Lan, W. Chen, and H. Chang, “Control of synthesis and optical properties of DNA templated silver nanoclusters by varying DNA length and sequence,” RSC Advances, vol. 1, no. 5, pp. 802–807, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Guo, L. Deng, and J. Wang, “Oligonucleotide-stabilized silver nanoclusters as fluorescent probes for sensitive detection of hydroquinone,” RSC Advances, vol. 3, no. 2, pp. 401–407, 2013. View at Google Scholar
  29. S. Han, S. Zhu, Z. Liu, L. Hu, S. Parveen, and G. Xu, “Oligonucleotide-stabilized fluorescent silver nanoclusters for turn-on detection of melamine,” Biosensors and Bioelectronics, vol. 36, no. 1, pp. 267–270, 2012. View at Google Scholar
  30. K. Ma, Q. Cui, Y. Shao, F. Wu, S. Xu, and G. Liu, “Emission modulation of DNA-templated fluorescent silver nanoclusters by divalent magnesium ion,” Journal of Nanoscience and Nanotechnology, vol. 12, no. 2, pp. 861–869, 2012. View at Google Scholar
  31. G. Lan, W. Chen, and H. Chang, “One-pot synthesis of fluorescent oligonucleotide Ag nanoclusters for specific and sensitive detection of DNA,” Biosensors and Bioelectronics, vol. 26, no. 5, pp. 2431–2435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Yeh, J. Sharma, J. J. Han, J. S. Martinez, and J. H. Werner, “A DNA-silver nanocluster probe that fluoresces upon hybridization,” Nano Letters, vol. 10, no. 8, pp. 3106–3110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. H. C. Yeh, J. Sharma, I. M. Shih, D. M. Vu, J. S. Martinez, and J. H. Werner, “A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color,” Journal of the American Chemical Society, vol. 134, no. 28, pp. 11550–11558, 2012. View at Google Scholar
  34. W. Guo, J. Yuan, Q. Dong, and E. Wang, “Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification,” Journal of the American Chemical Society, vol. 132, no. 3, pp. 932–934, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Lhomme, J. F. Constant, and M. Demeunynck, “Abasic DNA structure, reactivity, and recognition,” Biopolymers, vol. 52, no. 2, pp. 65–83, 1999. View at Google Scholar
  36. K. Ma, Y. Shao, Q. Cui, F. Wu, S. Xu, and G. Liu, “Base-stacking-determined fluorescence emission of DNA abasic site-templated silver nanoclusters,” Langmuir, vol. 28, no. 43, pp. 15313–15322, 2012. View at Google Scholar
  37. K. Ma, Q. Cui, G. Liu, F. Wu, S. Xu, and Y. Shao, “DNA abasic site-directed formation of fluorescent silver nanoclusters for selective nucleobase recognition,” Nanotechnology, vol. 22, no. 30, Article ID 305502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. C. M. Croce, “Causes and consequences of microRNA dysregulation in cancer,” Nature Reviews Genetics, vol. 10, no. 10, pp. 704–714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. S. W. Yang and T. Vosch, “Rapid detection of microRNA by a silver nanocluster DNA probe,” Analytical Chemistry, vol. 83, no. 18, pp. 6935–6939, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Shah, A. Rørvig-Lund, S. B. Chaabane et al., “Design aspects of bright red emissive silver nanoclusters/DNA probes for MicroRNA detection,” ACSNano, vol. 6, no. 10, pp. 8803–8814, 2012. View at Google Scholar
  41. W. Xin-Ping, Y. Bin-Cheng, W. Ping, and Y. Bang-Ce, “Highly sensitive detection of microRNAs based on isothermal exponential amplification-assisted generation of catalytic G-quadruplexDNAzyme,” Biosensors & Bioelectronics, vol. 42, pp. 131–135, 2013. View at Google Scholar
  42. Y. Zhang and C. Zhang, “Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor,” Analytical Chemistry, vol. 84, no. 1, pp. 224–231, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. Y.-Q. Liu, M. Zhang, B. C. Yin, and B. C. Ye, “Attomolar ultrasensitive MicroRNA detection by DNA-scaffolded silver-nanocluster probe based on isothermal amplification,” Analytical Chemistry, vol. 84, no. 12, pp. 5165–5169, 2012. View at Google Scholar
  44. M. Famulok and G. Mayer, “Aptamer modules as sensors and detectors,” Accounts of Chemical Research, vol. 44, no. 12, pp. 1349–1358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Sharma, H. Yeh, H. Yoo, J. H. Werner, and J. S. Martinez, “Silver nanocluster aptamers: in situ generation of intrinsically fluorescent recognition ligands for protein detection,” Chemical Communications, vol. 47, no. 8, pp. 2294–2296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Li, X. Zhong, H. Zhang, X. C. Le, and J. J. Zhu, “Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes,” Analytical Chemistry, vol. 84, no. 12, pp. 5170–5174, 2012. View at Google Scholar
  47. J. J. Liu, X. R. Song, Y. W. Wang, A. X. Zheng, G. N. Chen, and H. H. Yang, “Label-free and fluorescence turn-on aptasensor for protein detection via target-induced silver nanoclusters formation,” Analytica Chimica Acta, vol. 749, pp. 70–74, 2012. View at Google Scholar
  48. Z. Sun, Y. Wang, Y. Wei et al., “Ag cluster-aptamer hybrid: specifically marking the nucleus of live cells,” Chemical Communications, vol. 47, no. 43, pp. 11960–11962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Yin, X. He, K. Wang et al., “One-step engineering of silver nanoclusters-aptamer assemblies as luminescent labels to target tumor cells,” Nanoscale, vol. 4, no. 1, pp. 110–112, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Li, X. Zhong, F. Cheng, J. Zhang, L. Jiang, and J. Zhu, “One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging,” Analytical Chemistry, vol. 84, no. 9, pp. 4140–4146, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Yu, S. Choi, C. I. Richards, Y. Antoku, and R. M. Dickson, “Live cell surface labeling with fluorescent ag nanocluster conjugates,” Photochemistry and Photobiology, vol. 84, no. 6, pp. 1435–1439, 2008. View at Publisher · View at Google Scholar · View at Scopus