Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013 (2013), Article ID 679567, 7 pages
Research Article

Barrier Properties and Structural Study of Nanocomposite of HDPE/Montmorillonite Modified with Polyvinylalcohol

1Instituto de Investigaciones para la Industria Química (INIQUI-CONICET), Consejo de Investigaciones (CIUNSa), Facultad de Ingeniería (UNSa), Avenida Bolivia 5150, 4400 Salta, Argentina
2Instituto Tecnológico de Buenos Aires (ITBA), Instituto de Investigaciones para la Industria Química (INIQUI-UNSa-CONICET), Avenida Eduardo Madero 399, C1106ACD Buenos Aires, Argentina

Received 11 September 2012; Revised 1 February 2013; Accepted 5 February 2013

Academic Editor: Vincenzo Turco Liveri

Copyright © 2013 María C. Carrera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In this work was studied the permeation of CO2 in films of high-density polyethylene (HDPE) and organoclay modified with polyvinylalcohol () obtained from melt blending. Permeation study showed that the incorporation of the modified organoclay generates a significant effect on the barrier properties of HDPE. When a load of 2 wt% of was incorporated in the polymer matrix, the flow of CO2 decreased 43.7% compared to pure polyethylene. The results of TEM showed that clay layers were dispersed in the polymeric matrix, obtaining an exfoliated-structure nanocomposite. The thermal stability of nanocomposite was significantly enhanced with respect to the pristine HDPE. DSC results showed that the crystallinity was maintained as the pure polymeric matrix. Consequently, the decrease of permeability was attributable only to the effect of tortuosity generated by the dispersion of . Notably the mechanical properties remain equal to those of pure polyethylene, but with an increase in barrier properties to CO2. This procedure allows obtaining nanocomposites of HDPE with a good barrier property to CO2 which would make it competitive in the use of packaging.