Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 682514, 12 pages
http://dx.doi.org/10.1155/2013/682514
Research Article

On the Relevance of Considering the Intermolecular Interactions on the Prediction of the Vibrational Spectra of Isopropylamine

1Química-Física Molecular, Departamento de Química, FCTUC, Universidade de Coimbra, 3004-535 Coimbra, Portugal
2Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal

Received 2 May 2013; Revised 19 August 2013; Accepted 18 September 2013

Academic Editor: Anton Kokalj

Copyright © 2013 Ana M. Amado et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York, NY, USA, 1997.
  2. Y. Lu, Y. Wang, Z. Xu et al., “C-XH contacts in biomolecular systems: how they contribute to protein-ligand binding affinity,” The Journal of Physical Chemistry B, vol. 113, no. 37, pp. 12615–12621, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Melandri, “‘Union is strength’: how weak hydrogen bonds become stronger,” Physical Chemistry Chemical Physics, vol. 13, no. 31, pp. 13901–13911, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Rawat and P. Biswas, “Shape, flexibility and packing of proteins and nucleic acids in complexes,” Physical Chemistry Chemical Physics, vol. 13, no. 20, pp. 9632–9643, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Wyttenbach and M. T. Bowers, “Hydration of biomolecules,” Chemical Physics Letters, vol. 480, no. 1-3, pp. 1–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. M. Cabaleiro-Lago and M. A. Ríos, “Ab initio study of interactions in methylamine clusters. The significance of cooperative effects,” Journal of Chemical Physics, vol. 112, no. 5, pp. 2155–2163, 2000. View at Google Scholar · View at Scopus
  7. E. M. Cabaleiro-Lago and M. A. Ríos, “An ab initio study of the interaction in dimethylamine dimer and trimer,” Journal of Chemical Physics, vol. 113, no. 21, pp. 9523–9531, 2000. View at Google Scholar · View at Scopus
  8. M. F. de Carvalho, R. A. Mosquera, and R. Rivelino, “A density functional theory study of the hydrogen bond interactions in glycine dimers,” Chemical Physics Letters, vol. 445, no. 4–6, pp. 117–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. Li, X. An, B. Gong, and J. Cheng, “Spectroscopic and theoretical evidence for the cooperativity between red-shift hydrogen bond and blue-shift hydrogen bond in DMSO aqueous solutions,” Spectrochimica Acta A, vol. 69, no. 1, pp. 211–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. Mahadevi, Y. I. Neela, and G. N. Sastry, “A theoretical study on structural, spectroscopic and energetic properties of acetamide clusters [CH3CONH2] (n=115),” Physical Chemistry Chemical Physics, vol. 13, no. 33, pp. 15211–15220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. R. D. Parra, M. Furukawa, B. Gong, and X. C. Zeng, “Energetics and cooperativity in three-center hydrogen bonding interactions. I. Diacetamide-X dimers (X = HCN, CH3OH),” Journal of Chemical Physics, vol. 115, no. 13, pp. 6030–6035, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision A.02, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, Conn, USA, 2009.
  13. V. Barone, M. Biczysko, and M. Pavone, “The role of dispersion correction to DFT for modelling weakly bound molecular complexes in the ground and excited electronic states,” Chemical Physics, vol. 346, no. 1–3, pp. 247–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Dabkowska, P. Jurečka, and P. Hobza, “On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level,” The Journal of Chemical Physics, vol. 122, no. 20, Article ID 204322, 9 pages, 2005. View at Google Scholar · View at Scopus
  15. S. Grimme, “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” Journal of Computational Chemistry, vol. 27, no. 15, pp. 1787–1799, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Ireta, J. Neugebauer, and M. Scheffler, “On the accuracy of DFT for describing hydrogen bonds: dependence on the bond directionality,” The Journal of Physical Chemistry A, vol. 108, no. 26, pp. 5692–5698, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Peverati, M. Macrina, and K. K. Baldridge, “Assessment of DFT and DFT-D for potential energy surfaces of rare gas trimers-implementation and analysis of functionals and extrapolation procedures,” Journal of Chemical Theory and Computation, vol. 6, no. 7, pp. 1951–1965, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Amado, S. M. Fiuza, L. A. E. Batista de Carvalho, and P. J. A. Ribeiro-Claro, “On the effects of changing Gaussian program version and SCRF defining parameters: Iisopropylamine as a case study,” Bulletin of the Chemical Society of Japan, vol. 85, no. 9, pp. 962–975, 2012. View at Publisher · View at Google Scholar
  19. 2011, http://www.gaussian.com/g_tech/g_ur/k_dft.htm.
  20. S. F. Boys and F. Bernardi, “The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors,” Molecular Physics, vol. 19, no. 4, pp. 553–566, 1970. View at Publisher · View at Google Scholar
  21. L. F. Holroyd and T. van Mourik, “Insufficient description of dispersion in B3LYP and large basis set superposition errors in MP2 calculations can hide peptide conformers,” Chemical Physics Letters, vol. 442, no. 1–3, pp. 42–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Y.-G. Wang, “Examination of DFT and TDDFT methods II,” The Journal of Physical Chemistry A, vol. 113, no. 41, pp. 10873–10879, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. I. A. W. Filot, A. R. A. Palmans, P. A. J. Hilbers, R. A. van Santen, E. A. Pidko, and T. F. A. de Greef, “Understanding cooperativity in hydrogen-bond-induced supramolecular polymerization: a density functional theory study,” The Journal of Physical Chemistry B, vol. 114, no. 43, pp. 13667–13674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. P. L. Huyskens, “Factors governing the influence of a first hydrogen bond on the formation of a second one by the same molecule or ion,” Journal of the American Chemical Society, vol. 99, no. 8, pp. 2578–2582, 1977. View at Google Scholar · View at Scopus
  25. M. P. Hodges, A. J. Stone, and S. S. Xantheas, “Contribution of many-body terms to the energy for small water clusters: a comparison of ab initio calculations and accurate model potentials,” The Journal of Physical Chemistry A, vol. 101, no. 48, pp. 9163–9168, 1997. View at Google Scholar · View at Scopus
  26. H. Kistenmacher, G. C. Lie, H. Popkie, and E. Clementi, “Study of the structure of molecular complexes. VI. Dimers and small clusters of water molecules in the Hartree-Fock approximation,” The Journal of Chemical Physics, vol. 61, no. 2, pp. 546–561, 1974. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Ebrahimi, H. Roohi, and S. Mostafa Habibi, “The characterization of stationary points in the potential energy surface of difluoromethane dimer,” Journal of Molecular Structure: THEOCHEM, vol. 684, no. 1–3, pp. 87–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Joseph and E. D. Jemmis, “Red-, blue-, or no-shift in hydrogen bonds: a unified explanation,” Journal of the American Chemical Society, vol. 129, no. 15, pp. 4620–4632, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Kovács, A. Szabó, D. Nemcsok, and I. Hargittai, “Blue-shifting C-HX, (X = O, halogen) hydrogen bonds in the dimers of formaldehyde derivatives,” The Journal of Physical Chemistry A, vol. 106, no. 23, pp. 5671–5678, 2002. View at Publisher · View at Google Scholar
  30. P.-P. Zhou and W.-Y. Qiu, “Red- and blue-shifted hydrogen bonds in the cis-trans noncyclic formic acid dimer,” ChemPhysChem, vol. 10, no. 11, pp. 1847–1858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. K. Chandra, S. Parveen, S. Das, and T. Zeegers-Huyskens, “Blue shifts of the C-H stretching vibrations in hydrogen-bonded and protonated trimethylamine. Effect of hyperconjugation on bond properties,” Journal of Computational Chemistry, vol. 29, no. 9, pp. 1490–1496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. A. K. Chandra, S. Parveen, and T. Zeegers-Huyskens, “Anomeric effects in the symmetrical and asymmetrical structures of triethylamine. Blue-shifts of the C-H stretching vibrations in complexed and protonated triethylamine,” The Journal of Physical Chemistry A, vol. 111, no. 36, pp. 8884–8891, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. K.-H. Chen, J.-H. Lii, Y. Fan, and N. L. Allinger, “Molecular mechanics (MM4) study of amines,” Journal of Computational Chemistry, vol. 28, no. 15, pp. 2391–2412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Li, L. Liu, and H. B. Schlegel, “On the physical origin of blue-shifted hydrogen bonds,” Journal of the American Chemical Society, vol. 124, no. 32, pp. 9639–9647, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Padrào, S. M. Fiuza, A. M. Amado, A. M. Amorim da Costa, and L. A. E. Batista de Carvalho, “Validation of the mPW1PW quantum chemical calculations for the vibrational study of organic molecules—re-assignment of the isopropylamine vibrational spectra,” Journal of Physical Organic Chemistry, vol. 24, no. 2, pp. 110–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. J. R. Durig, G. A. Guirgis, and D. A. C. Compton, “Analysis of torsional spectra of molecules with two internal C3v rotors. 13. Vibrational assignments, torsional potential functions, and gas phase thermodynamic functions of isopropylamine-d0 and -d2,” The Journal of Physical Chemistry, vol. 83, no. 10, pp. 1313–1323, 1979. View at Publisher · View at Google Scholar · View at Scopus
  37. M. P. M. Marques, L. A. E. Batista de Carvalho, and J. Tomkinson, “Study of biogenic and α,ω-polyamines by combined inelastic neutron scattering and Raman spectroscopies and by ab initio molecular orbital calculations,” The Journal of Physical Chemistry A, vol. 106, no. 11, pp. 2473–2482, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. A. M. Amado, J. C. Otero, M. P. M. Marques, and L. A. E. Batista de Carvalho, “Spectroscopic and theoretical studies on solid 1,2-ethylenediamine dihydrochloride salt,” ChemPhysChem, vol. 5, no. 12, pp. 1837–1847, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Cubero, M. Orozco, P. Hobza, and F. J. Luque, “Hydrogen bond versus anti-hydrogen bond: a comparative analysis based on the electron density topology,” The Journal of Physical Chemistry A, vol. 103, no. 32, pp. 6394–6401, 1999. View at Google Scholar · View at Scopus
  40. P. Hobza, “The H-index unambiguously discriminates between hydrogen bonding and improper blue-shifting hydrogen bonding,” Physical Chemistry Chemical Physics, vol. 3, no. 13, pp. 2555–2556, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. B. J. van der Veken, W. A. Herrebout, R. Szostak, D. N. Shchepkin, Z. Havlas, and P. Hobza, “The nature of improper, blue-shifting hydrogen bonding verified experimentally,” Journal of the American Chemical Society, vol. 123, no. 49, pp. 12290–12293, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Zierkiewicz, D. Michalska, Z. Havlas, and P. Hobza, “Study of the nature of improper blue-shifting hydrogen bonding and standard hydrogen bonding in the X3CHOH2 and XHOH2 complexes (X = F, Cl, Br, I): a correlated ab initio study,” ChemPhysChem, vol. 3, no. 6, pp. 511–518, 2002. View at Google Scholar
  43. P. J. A. Ribeiro-Claro, L. Batista de Carvalho, and A. M. Amado, “Evidence of dimerization through C-HO interactions in liquid 4-methoxybenzaldehyde from Raman spectra and Ab Initio calculations,” Journal of Raman Spectroscopy, vol. 28, no. 11, pp. 867–872, 1997. View at Google Scholar · View at Scopus
  44. P. J. A. Ribeiro-Claro, M. P. M. Marques, and A. M. Amado, “Experimental and theoretical evidence of C-HO hydrogen bonding in liquid 4-fluorobenzaldehyde,” ChemPhysChem, vol. 3, no. 7, pp. 599–606, 2002. View at Google Scholar
  45. T. Steiner, E. B. Starikov, A. M. Amado, and J. J. C. Teixeira-Dias, “Weak hydrogen bonding. Part 2. The hydrogen bonding nature of short C-H π contacts: cristallographic, spectroscopic and quantum-mechanical studies of some terminal alkynes,” Journal of the Chemical Society, Perkin Transactions 2, no. 7, pp. 1321–1326, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. P. D. Vaz, M. Nolasco, N. Fonseca et al., “C-HO hydrogen bonding in 4-phenyl-benzaldehyde: a comprehensive crystallographic, spectroscopic and computational study,” Physical Chemistry Chemical Physics, vol. 7, no. 16, pp. 3027–3034, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Wolfe, H. B. Schlegel, M. H. Whangbo, and F. Bernardi, “On the origin of the Bohlmann bands,” Canadian Journal of Chemistry, vol. 52, no. 22, pp. 3787–3792, 1974. View at Publisher · View at Google Scholar
  48. M. M. Nolasco, A. M. Amado, and P. J. A. Ribeiro-Claro, “Computationally-assisted approach to the vibrational spectra of molecular crystals: study of hydrogen-bonding and pseudo-polymorphism,” ChemPhysChem, vol. 7, no. 10, pp. 2150–2161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Sardo, A. M. Amado, and P. J. A. Ribeiro-Claro, “Hydrogen bonding in nitrofurantoin polymorphs: a computation-assisted spectroscopic study,” Journal of Raman Spectroscopy, vol. 40, no. 12, pp. 1956–1965, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. M. Nolasco, A. M. Amado, and P. J. A. Ribeiro-Claro, “Effect of hydrogen bonding in the vibrational spectra of trans-cinnamic acid,” Journal of Raman Spectroscopy, vol. 40, no. 4, pp. 394–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. M. Nolasco, A. M. Amado, and P. J. A. Ribeiro-Claro, “Insights into phase stability of anhydrous/hydrate systems: a Raman-based methodology,” Journal of Raman Spectroscopy, vol. 41, no. 3, pp. 340–349, 2010. View at Publisher · View at Google Scholar · View at Scopus