Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 703057, 9 pages
http://dx.doi.org/10.1155/2013/703057
Research Article

Quality Attributes of Fresh-Cut Coconut after Supercritical Carbon Dioxide Pasteurization

1Department of Materials Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
2Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia

Received 11 February 2013; Accepted 21 May 2013

Academic Editor: Marleny D. A. Saldaña

Copyright © 2013 Giovanna Ferrentino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Bi, J. Wu, Y. Zhang, Z. Xu, and X. Liao, “High pressure carbon dioxide treatment for fresh-cut carrot slices,” Innovative Food Science and Emerging Technologies, vol. 12, no. 3, pp. 298–304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Sinigaglia, M. R. Corbo, D. D'Amato, D. Campaniello, and C. Altieri, “Shelf-life modelling of ready-to-eat coconut,” International Journal of Food Science and Technology, vol. 38, no. 5, pp. 547–552, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Ohlsson, “Minimal processing-preservation methods of the future: an overview,” Trends in Food Science and Technology, vol. 5, no. 11, pp. 341–344, 1994. View at Google Scholar · View at Scopus
  4. B. J. Jennylynd and N. Tipvanna, “Processing of fresh-cut tropical fruits and vegetables: a technical guide,” in Rap Publication, R. S. Rolle, Ed., vol. 16, pp. 1–84, Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific, Bangkok, Thailand, 2001. View at Google Scholar
  5. Y. Tatsumi, A. E. Watada, and P. P. Ling, “Sodium chloride treatment or waterjet slicing effects on white tissue development of carrot sticks,” Journal of Food Science, vol. 58, pp. 1390–1392, 1993. View at Publisher · View at Google Scholar
  6. L. R. Howard, L. E. Griffin, and Y. Lee, “Steam treatment of minimally processed carrot sticks to control surface discoloration,” Journal of Food Science, vol. 59, pp. 356–358, 1994. View at Publisher · View at Google Scholar
  7. H. R. Bolin, “Retardation of surface lignification on fresh peeled carrots,” Journal of Food Processing and Preservation, vol. 16, pp. 99–104, 1992. View at Publisher · View at Google Scholar
  8. A. Amanatidou, R. A. Slump, L. G. M. Gorris, and E. J. Smid, “High oxygen and high carbon dioxide modified atmospheres for shelf-life extension of minimally processed carrots,” Journal of Food Science, vol. 65, no. 1, pp. 61–66, 2000. View at Google Scholar · View at Scopus
  9. S. Damar and M. O. Balaban, “Review of dense phase CO2 technology: microbial and enzyme inactivation, and effects on food quality,” Journal of Food Science, vol. 71, no. 1, pp. R1–R11, 2006. View at Google Scholar · View at Scopus
  10. G. Ferrentino and S. Spilimbergo, “High pressure carbon dioxide pasteurization of solid foods: current knowledge and future outlooks,” Trends in Food Science and Technology, vol. 22, no. 8, pp. 427–441, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C. I. Wei, M. O. Balaban, S. Y. Fernando, and A. J. Peplow, “Bacterial effect of high pressure CO2 treatment on foods spiked with Listeria or Salmonella,” Journal of Food Protection, vol. 54, pp. 189–193, 1991. View at Google Scholar
  12. M. T. Valverde, F. Marín-Iniesta, and L. Calvo, “Inactivation of Saccharomyces cerevisiae in conference pear with high pressure carbon dioxide and effects on pear quality,” Journal of Food Engineering, vol. 98, no. 4, pp. 421–428, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Ji, L. Zhang, S. Liu, X. Qu, C. Zhang, and J. Gao, “Optimization of microbial inactivation of shrimp by dense phase carbon dioxide,” International Journal of Food Microbiology, vol. 156, no. 1, pp. 44–49, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Ferrentino, S. Balzan, A. Dorigato, A. Pegoretti, and S. Spilimbergo, “Effect of supercritical carbon dioxidepasteurization on natural microbiota, texture and microstructure of fresh-cut coconut,” Journal of Food Science, vol. 77, no. 5, pp. E137–E143, 2012. View at Publisher · View at Google Scholar
  15. R. Hunter and R. W. Harold, The Measurement of Appearance, chapter 11, John Wiley & Sons, New York, NY, USA, 2nd edition, 1975.
  16. G. Ferrentino, S. Balzan, and S. Spilimbergo, “On-line color monitoring of solid foods during supercritical CO2 pasteurization,” Journal of Food Engineering, vol. 110, no. 1, pp. 80–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. Association of Official Analytical Chemists (AOAC), Official Methods of Analysis, AOAC International, Baltimore, Md, USA, 16th edition, 1995.
  18. ISO 659, “Determination of oil content,” (Reference method), 1998.
  19. J. Lachman, V. Hosnedl, V. Pivec, and M. Orsák, “Polyphenols in cereals and their positive and negative role in human and animal nutrition,” in Proceedings of Conference Cereals for Human Health and Preventive Nutrition, pp. 118–125, 1998.
  20. T. E. Kramling and V. E. Singleton, “An estimate of the nonflavonoid phenols in wines,” American Journal of Enology & Viticulture, vol. 20, pp. 86–92, 1969. View at Google Scholar
  21. IOOC, “Determination of biophenols in olive oils by HPLC,” 2008, http://www.internationaloliveoil.org/web/aa-ingles/corp/AreasActivitie/economics/Areas__Activitie.html.
  22. W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” Lebensmittel-Wissenschaft und-Technologie, vol. 28, no. 1, pp. 25–30, 1995. View at Google Scholar · View at Scopus
  23. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radical Biology and Medicine, vol. 26, no. 9-10, pp. 1231–1237, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Arnnok, C. Ruangviriyachai, R. Mahachai, S. Techawongstien, and S. Chanthai, “Optimization and determination of polyphenol oxidase and peroxidase activities in hot pepper (Capsicum annuum L.) pericarb,” International Food Research Journal, vol. 17, no. 2, pp. 385–392, 2010. View at Google Scholar · View at Scopus
  25. R. C. Soliva, P. Elez, M. Sebastián, and O. Martín, “Evaluation of browning effect on avocado purée preserved by combined methods,” Innovative Food Science and Emerging Technologies, vol. 1, no. 4, pp. 261–268, 2000. View at Google Scholar · View at Scopus
  26. J. Díaz, A. Bernal, F. Pomar, and F. Merino, “Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification,” Plant Science, vol. 161, no. 1, pp. 179–188, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Komes, A. Belščak-Cvitanović, D. Horžić, H. Drmić, S. Škrabal, and B. Miličević, “Bioactive and sensory properties of herbal spirit enriched with cocoa (Theobroma cacao L.) polyphenolics,” Food Bioprocess Technology, vol. 5, no. 7, pp. 2908–2920, 2012. View at Publisher · View at Google Scholar
  28. T. Koksal and I. Dikbas, “Color stability of different denture teeth materials against various staining agents,” Dental Materials Journal, vol. 27, no. 1, pp. 139–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Kincal, W. S. Hill, M. Balaban et al., “A continuous high-pressure carbon dioxide system for cloud and quality retention in orange juice,” Journal of Food Science, vol. 71, no. 6, pp. C338–C344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Ferrentino, M. L. Plaza, M. Ramirez-Rodrigues, G. Ferrari, and M. O. Balaban, “Effects of dense phase carbon dioxide pasteurization on the physical and quality attributes of a red grapefruit juice,” Journal of Food Science, vol. 74, no. 6, pp. E333–E341, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. D. Pozo-Insfran, M. O. Balaban, and S. T. Talcott, “Microbial stability, phytochemical retention, and organoleptic attributes of dense phase CO2 processed muscadine grape juice,” Journal of Agricultural and Food Chemistry, vol. 54, no. 15, pp. 5468–5473, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Liu, Y. Gao, H. Xu, Q. Hao, G. Liu, and Q. Wang, “Inactivation of peroxidase and polyphenol oxidase in red beet (Beta vulgaris L.) extract with continuous high pressure carbon dioxide,” Food Chemistry, vol. 119, no. 1, pp. 108–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. G. R. Bankar, P. G. Nayak, P. Bansal et al., “Vasorelaxant and antihypertensive effect of Cocos nucifera Linn. endocarp on isolated rat thoracic aorta and DOCA salt-induced hypertensive rats,” Journal of Ethnopharmacology, vol. 134, no. 1, pp. 50–54, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Escarpa and M. C. Gonzalez, “An overview of analytical chemistry of phenolic compounds in foods,” Critical Reviews in Analytical Chemistry, vol. 31, no. 2, pp. 57–139, 2001. View at Google Scholar · View at Scopus
  35. J. A. Vinson, X. Su, L. Zubik, and P. Bose, “Phenol antioxidant quantity and quality in foods: fruits,” Journal of Agricultural and Food Chemistry, vol. 49, no. 11, pp. 5315–5321, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. S.-J. Park, J.-I. Lee, and J. Park, “Effects of a combined process of high-pressure carbon dioxide and high hydrostatic pressure on the quality of carrot juice,” Journal of Food Science, vol. 67, no. 5, pp. 1827–1834, 2002. View at Google Scholar · View at Scopus
  37. D. D. Pozo-Insfran, M. O. Balaban, and S. T. Talcott, “Inactivation of polyphenol oxidase in muscadine grape juice by dense phase-CO2 processing,” Food Research International, vol. 40, no. 7, pp. 894–899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. F. S. Burnette, “Peroxidase and its relationship to food flavour and quality. A review,” Journal of Food Science, vol. 42, pp. 1–6, 1977. View at Publisher · View at Google Scholar
  39. E. M. Gonçalves, J. Pinheiro, M. Abreu, T. R. S. Brandão, and C. L. M. Silva, “Carrot (Daucus carota L.) peroxidase inactivation, phenolic content and physical changes kinetics due to blanching,” Journal of Food Engineering, vol. 97, no. 4, pp. 574–581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. A. T. Fricks, D. P. B. Souza, E. G. Oestreicher et al., “Evaluation of radish (Raphanus sativus L.) peroxidase activity after high-pressure treatment with carbon dioxide,” The Journal of Supercritical Fluids, vol. 38, no. 3, pp. 347–353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. S. Primo, G. C. Ceni, N. S. Marcon et al., “Effects of compressed carbon dioxide treatment on the specificity of oxidase enzymatic complexes from mate tea leaves,” The Journal of Supercritical Fluids, vol. 43, no. 2, pp. 283–290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Gui, F. Chen, J. Wu, Z. Wang, X. Liao, and X. Hu, “Inactivation and structural change of horseradish peroxidase treated with supercritical carbon dioxide,” Food Chemistry, vol. 97, no. 3, pp. 480–489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Habulin and Z. Knez, “Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane,” Journal of Chemical Technology and Biotechnology, vol. 76, no. 12, pp. 1260–1266, 2001. View at Publisher · View at Google Scholar · View at Scopus