Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013 (2013), Article ID 717232, 6 pages
http://dx.doi.org/10.1155/2013/717232
Research Article

Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activities of β-Carboline and Quinoline Alkaloids Derivatives from the Plants of Genus Peganum

1Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201210, China
2The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai 201210, China
3Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201210, China

Received 29 June 2012; Accepted 29 January 2013

Academic Editor: A. Hamid A. Hadi

Copyright © 2013 Ting Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Bailey and D. K. Lahiri, “A novel effect of rivastigmine on pre-synaptic proteins and neuronal viability in a neurodegeneration model of fetal rat primary cortical cultures and its implication in Alzheimer's disease,” Journal of Neurochemistry, vol. 112, no. 4, pp. 843–853, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Schuster, M. Spetea, M. Music et al., “Morphinans and isoquinolines: acetylcholinesterase inhibition, pharmacophore modeling, and interaction with opioid receptors,” Bioorganic & Medicinal Chemistry, vol. 18, no. 14, pp. 5071–5080, 2010. View at Publisher · View at Google Scholar
  3. N. H. Greig, D. K. Lahiri, and K. Sambamurti, “Butyrylcholinesterase: an important new target in Alzheimer's disease therapy,” International Psychogeriatrics, vol. 14, supplement 1, pp. 77–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Orhan, B. Şener, M. I. Choudhary, and A. Khalid, “Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants,” Journal of Ethnopharmacology, vol. 91, no. 1, pp. 57–60, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Mohamed and P. P. N. Rao, “Design, synthesis and evaluation of 2,4-disubstituted pyrimidines as cholinesterase inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 12, pp. 3606–3609, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. X. M. Cheng, T. Zhao, T. Yang, C. H. Wang, S. W. A. Bligh, and Z. T. Wang, “HPLC fingerprints combined with principal component analysis, hierarchical cluster analysis and linear discriminant analysis for the classification and differentiation of Peganum sp. indigenous to China,” Phytochemical Analysis, vol. 21, no. 3, pp. 279–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kartal, M. L. Altun, and S. Kurucu, “HPLC method for the analysis of harmol, harmalol, harmine and harmaline in the seeds of Peganum harmala L,” Journal of Pharmaceutical and Biomedical Analysis, vol. 31, no. 2, pp. 263–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Hemmateenejad, A. Abbaspour, H. Maghami, R. Miri, and M. R. Panjehshahin, “Partial least squares-based multivariate spectral calibration method for simultaneous determination of beta-carboline derivatives in Peganum harmala seed extracts,” Analytica Chimica Acta, vol. 575, no. 2, pp. 290–299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Chinese Pharmacopoeia Committee, Drug Standards of the Ministry of Public Health of the People’s Republic of China, Uygur Pharmaceutical Section, 1998.
  10. J. Riba, M. Valle, G. Urbano, M. Yritia, A. Morte, and M. J. Barbanoj, “Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics,” Journal of Pharmacology and Experimental Therapeutics, vol. 306, no. 1, pp. 73–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Tahraoui, J. El-Hilaly, Z. H. Israili, and B. Lyoussi, “Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province),” Journal of Ethnopharmacology, vol. 110, no. 1, pp. 105–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. L. Fan and X. S. Yao, “The research of constituents and pharmacology of the genus Peganum,” Journal of Shenyang College of Pharmacy, vol. 9, pp. 144–151, 1992. View at Google Scholar
  13. T. Zhao, C. H. Wang, and Z. T. Wang, “Chemical constituents and pharmacologic actions of genus Peganum: research advances,” Journal of International Pharmaceutical Research, vol. 37, no. 5, pp. 333–345, 2010. View at Google Scholar · View at Scopus
  14. X. Y. Zheng, Z. J. Zhang, G. X. Chou et al., “Acetylcholinesterase inhibitive activity-guided isolation of two new alkaloids from seeds of Peganum nigellastrum Bunge by an in vitro TLC- bioautographic assay,” Archives of Pharmacal Research, vol. 32, no. 9, pp. 1245–1251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Y. Zheng, L. Zhang, X. M. Cheng, Z. J. Zhang, C. H. Wang, and Z. T. Wang, “Identification of acetylcholinesterase inhibitors from seeds of plants of genus Peganum by thin-layer chromatography-bioautography,” JPC-Journal of Planar Chromatography-Modern TLC, vol. 24, no. 6, pp. 470–474, 2011. View at Google Scholar
  16. J. A. Boerth and S. Rasapalli, “Studies toward the total synthesis of quinazoline alkaloids: vasicinone, luotonin, and nigellastrine,” in Proceedings of the 244th ACS National Meeting & Exposition, Philadelphia, Pa, USA, August 2012, CHED-304, http://abstracts.acs.org/chem/244nm/program/view.php.
  17. J. R. Fu, L. Teng, X. Y. Dai, and F. S. Yu, “Optimization of extraction and purification of harmala alkaloids and the effects on learning and memory of model dementia mice induced by aluminum,” Chinese Traditional Patent Medicine, vol. 33, pp. 975–979, 2011. View at Google Scholar
  18. G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity,” Biochemical Pharmacology, vol. 7, no. 2, pp. 88–95, 1961. View at Google Scholar · View at Scopus
  19. M. A. Gordon, D. E. Carpenter, H. W. Barrett, and I. B. Wilson, “Determination of the normality of cholinesterase solutions,” Analytical Biochemistry, vol. 85, no. 2, pp. 519–527, 1978. View at Google Scholar · View at Scopus
  20. V. Gorun, I. Proinov, V. Baltescu, G. Balaban, and O. Barzu, “Modified Ellman procedure for assay of cholinesterases in crude enzymatic preparations,” Analytical Biochemistry, vol. 86, no. 1, pp. 324–326, 1978. View at Google Scholar · View at Scopus
  21. B. Tasso, M. Catto, O. Nicolotti et al., “Quinolizidinyl derivatives of bi- and tricyclic systems as potent inhibitors of acetyl- and butyrylcholinesterase with potential in Alzheimer's disease,” European Journal of Medicinal Chemistry, vol. 46, no. 6, pp. 2170–2184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Zhao, S. S. Zheng, B. F. Zhang et al., “Metabolic pathways of the psychotropic-carboline alkaloids, harmaline and harmine, by liquid chromatography/mass spectrometry and NMR spectroscopy,” Food Chemistry, vol. 134, no. 2, pp. 1096–1105, 2012. View at Publisher · View at Google Scholar
  23. A. M. Yu, J. R. Idle, K. W. Krausz, A. Küpfer, and F. J. Gonzalez, “Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic β-carboline alkaloids harmaline and harmine,” Journal of Pharmacology and Experimental Therapeutics, vol. 305, no. 1, pp. 315–322, 2003. View at Publisher · View at Google Scholar · View at Scopus