Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 798508, 11 pages
Research Article

Predicting Dyspnea Inducers by Molecular Topology

1Molecular Connectivity and Drug Design Research Unit, Department of Physical Chemistry, Faculty of Pharmacy, University of Valencia Avd, V.A. Estellés, Burjassot, 46100 Valencia, Spain
2Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23284-2030, USA

Received 22 June 2012; Accepted 25 July 2012

Academic Editor: M. Natália D. S. Cordeiro

Copyright © 2013 María Gálvez-Llompart et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


QSAR based on molecular topology (MT) is an excellent methodology used in predicting physicochemical and biological properties of compounds. This approach is applied here for the development of a mathematical model capable to recognize drugs showing dyspnea as a side effect. Using linear discriminant analysis, it was found a four-variable regression equations enabling a predictive rate of about 81% and 73% in the training and test sets of compounds, respectively. These results demonstrate that QSAR-MT is an efficient tool to predict the appearance of dyspnea associated with drug consumption.