Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 851297, 13 pages
http://dx.doi.org/10.1155/2013/851297
Review Article

2-Chloroquinoline-3-carbaldehyde II: Synthesis, Reactions, and Applications

1Applied Organic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
2Shaqra University, Dawadami, Saudi Arabia
3Chemical Industries Division, National Research Centre, Dokki, Giza 12622, Egypt
4Chemistry Department, Faculty of Science, Jazan University, Saudi Arabia

Received 13 May 2013; Accepted 17 September 2013

Academic Editor: Patricia Valentao

Copyright © 2013 Bakr F. Abdel-Wahab and Rizk E. Khidre. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Paul and R. Gupta, “A simple and fast reaction of 3-substituted-4-amino-5-mercapto-s-triazoles with substituted aldehydes without solvent under microwave irradiation: an environment co-friendly synthesis,” Indian Journal of Chemical Technology, vol. 5, pp. 263–266, 1998. View at Google Scholar
  2. R. Gupta, S. Paul, P. Kamotra, and A. K. Gupta, “Rapid synthesis of s-triazolo [3,4-b] [1,3,4] thiadiazoles and quinolines under microwave irradiation,” Indian Journal of Heterocyclic Chemistry, vol. 7, no. 2, pp. 155–156, 1997. View at Google Scholar · View at Scopus
  3. A. M. Farghaly, N. S. Habib, M. A. Khalil, and O. A. El-Sayed, “Synthesis of novel 2-substituted quinoline derivatives: antimicrobial, inotropic, and chronotropic activities,” Archiv der Pharmazie, vol. 323, no. 4, pp. 247–251, 1990. View at Google Scholar · View at Scopus
  4. A. M. Farghally, N. S. Habib, A. A. B. Hazzaa, and O. A. El-Sayed, “Synthesis of substituted quinoline-3-carbaldehyde (2,3- dihydrothiazol-2-ylidene) hydrazones of potential antimicrobial activity,” Journal de Pharmacie de Belgique, vol. 40, no. 6, pp. 366–372, 1985. View at Google Scholar · View at Scopus
  5. R. Gupta, A. K. Gupta, S. Paul, and P. L. Kachroo, “Synthesis and biological activities of some 2-chloro-6/8-substituted-3-(3-alkyl/aryl-5,6-dihydro-s-triazolo[3,4-b][1,3,4]thiadiazol-6-yl)quinolines,” Indian Journal Of Chemistry B, vol. 37, pp. 1211–1213, 1998. View at Google Scholar
  6. V. J. Bulbule, V. H. Deshpande, S. Velu, A. Sudalai, S. Sivasankar, and V. T. Sathe, “Heterogeneous henry reaction of aldehydes: diastereoselective synthesis of nitroalcohol derivatives over Mg-Al hydrotalcites,” Tetrahedron, vol. 55, no. 30, pp. 9325–9332, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Cziaky, F. Korodi, L. Frank, and I. Czink, “Synthesis and antimycotic activity of new 2-chloro-3-(2-nitro)ethyl- and (2-nitro)vlnylquinolines,” Heterocyclic Communications, vol. 2, no. 1, pp. 63–70, 1996. View at Publisher · View at Google Scholar
  8. F. Herencia, M. L. Ferrándiz, A. Ubeda et al., “Synthesis and anti-inflammatory activity of chalcone derivatives,” Bioorganic and Medicinal Chemistry Letters, vol. 8, no. 10, pp. 1169–1174, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. O. A. El-Sayed, M. El-Semary, and M. A. Khalil, “Non-steroidal anti-inflammatory agents: synthesis of pyrazolyl pyrazolinyl and pyrimidinyl derivatives of quinolone,” Alexandria Journal of Pharmaceutical Sciences, vol. 10, no. 1, pp. 43–46, 1996. View at Google Scholar
  10. M. Sekar and K. J. R. Prasad, “Synthesis of some novel 2-oxopyrano[2,3-b]- and 2-oxopyrido[2,3-b]quinoline derivatives as potential antimalarial, diuretic, clastogenic and antimicrobial agents,” Journal of Chemical Technology and Biotechnology, vol. 72, pp. 50–54, 1998. View at Google Scholar
  11. M. R. Bell and J. H. U. S. Ackerman, US, 4920128, 1990, http://worldwide.espacenet.com/numberSearch?locale=en_EP.
  12. B. F. Abdel-Wahab, R. E. Khidre, and A. A. Farahat, “Pyrazole-3(4)-carbaldehyde: synthesis, reactions and biological activity,” Arkivoc, vol. 2011, no. 1, pp. 196–245, 2011. View at Google Scholar · View at Scopus
  13. W. M. Abdou and R. E. Khidre, “Overview of the chemical reactivity of phosphonyl carbanions toward some carbon-nitrogen systems,” Current Organic Chemistry, vol. 16, no. 7, pp. 913–930, 2012. View at Publisher · View at Google Scholar
  14. B. F. Abdel-Wahab, R. E. Khidre, A. A. Farahat, and A. A. S. El-Ahl, “2-Chloroquinoline-3-carbaldehydes: synthesis, reactions and applications,” Arkivoc, pp. 211–276, 2012. View at Publisher · View at Google Scholar
  15. R. E. Khidre and B. F. Abdel-Wahab, “Application of benzoylaceteonitrile in the synthesis of pyridines derivatives,” Current Organic Chemistry, vol. 17, no. 4, pp. 430–445, 2013. View at Publisher · View at Google Scholar
  16. R. E. Khidre, H. A. Mohamed, and B. F. Abdel-wahab, “Synthesis of 5-membered heterocycles using benzoylacetonitriles as synthon,” Turkish Journal of Chemistry, vol. 37, pp. 1–35, 2013. View at Publisher · View at Google Scholar
  17. M. Kidwai and N. Negi, “Synthesis of some novel substituted quinolines as potent analgesic agents,” Monatshefte fur Chemie, vol. 128, no. 1, pp. 85–89, 1997. View at Google Scholar · View at Scopus
  18. O. Meth-Cohn, B. Narine, B. Tarnowski et al., “A versatile new synthesis of quinolines and related fused pyridines—part 9: synthetic application of the 2-chloroquinoline-3-carbaldehydes,” Journal of the Chemical Society, Perkin Transactions 1, vol. 9, pp. 2509–2517, 1981. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Meth-Cohn, B. Narine, and B. Tarnowski, “A versatile new synthesis of quinolines and related fused pyridines—part 5: the synthesis of 2-chloroquinoline-3-carbaldehydes,” Journal of the Chemical Society, Perkin Transactions 1, vol. 5, pp. 1520–1530, 1981. View at Publisher · View at Google Scholar · View at Scopus
  20. J. H. Rigby and D. M. Danca, “Vinyl isocyanates in alkaloid synthesis. Camptothecin model studies,” Tetrahedron Letters, vol. 38, no. 28, pp. 4969–4972, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. Wright and T. L. EP, 120483, 1984, http://worldwide.espacenet.com/numberSearch?locale=en_EP.
  22. O. Meth-Cohn and B. Tarnowski, “A versatile new synthesis of quinolines and related fused pyridines—part IV: 1 A simple one-pot route to pyrido[2,3-b]quinolin-2-ones from anilides,” Tetrahedron Letters, vol. 21, no. 38, pp. 3721–3722, 1980. View at Google Scholar · View at Scopus
  23. L. E. Konstantinovskii, R. Y. Olekhnovitch, M. S. Korobov, L. E. Nivorozhkin, and V. I. Minkin, “Stereodynamical interconversion of bis(N-aryl-α-isopropyl-β-aminovinylthionato)zinc(II) and -cadmium(II),” Polyhedron, vol. 10, no. 8, pp. 771–778, 1991. View at Google Scholar · View at Scopus
  24. M. A. Khalil, N. S. Habib, A. M. Farghaly, and O. A. El-Sayed, “Synthesis, antimicrobial, inotropic, and chronotropic activities of novel 1,2,4-triazolo[4,3-a]quinolines,” Archiv der Pharmazie, vol. 324, no. 4, pp. 249–253, 1991. View at Publisher · View at Google Scholar
  25. T. Tilakraj and S. Y. J. Ambekar, “Synthesis and mass spectra of some 2H-pyrano[2,3-b]quinolin-2-ones,” Indian Journal of Chemistry, vol. 62, pp. 251–253, 1985. View at Google Scholar
  26. R. A. Pawar, P. B. Bajare, and S. B. Mundade, “Studies on Vilsmeier-Haack reaction. A new route to 2-chloroquinoline-3-carboxyaldehydes an a furoquinoline derivative,” Journal of the Indian Chemical Society, vol. 67, no. 8, pp. 685–686, 1990. View at Google Scholar · View at Scopus
  27. B. Prabhuswamy and S. Y. Ambekar, “Synthetic communications: an international journal for rapid communication of synthetic organic chemistry,” Synthetic Communications, vol. 29, no. 20, pp. 3477–3485, 1999. View at Publisher · View at Google Scholar
  28. Z. Cziaky and F. Korodi, “A new heterocyclic ring system: 13H-Benzimidazo[2′,1′:2,3][1,3]thiazino[6,5-b]quinoline,” Heterocycles, vol. 36, pp. 2475–2482, 1993. View at Publisher · View at Google Scholar
  29. F. Korodi, Z. Cziaky, and Z. Szabo, “Fused 1,2,4-triazole heterocycles. I. Synthesis of novel [1,2,4]triazolo[5’,1’:2,3][1,3]thiazino[6,5-b]quinolines,” Heterocycles, vol. 34, no. 9, pp. 1711–1720, 1992. View at Publisher · View at Google Scholar
  30. Z. Cziaky and Z. Szabo, “Synthesis of 2H-pyrano[2,3-b]quinolines—part II: preparation and 1H-nmr investigations of 4-hydroxy-2-methyl-3,4-dihydro-2H-pyrano[2,3-b]quinolines,” Journal of Heterocyclic Chemistry, vol. 32, pp. 755–760, 1995. View at Publisher · View at Google Scholar
  31. B. B. Neelima and A. P. Bhaduri, “Novel synthesis of isoxazolo[5,4-b]quinolines,” Journal of Heterocyclic Chemistry, vol. 21, p. 1469, 1984. View at Publisher · View at Google Scholar
  32. B. Bhat and A. P. Bhaduri, “A novel one-step synthesis of 2-methoxycarbonylthieno[2,3-b]quinolines and 3-hydroxy-2-methoxycarbonyl-2,3-dihydrothieno[2,3-b]-quinolines,” Synthesis, vol. 1984, no. 8, pp. 673–676, 1984. View at Publisher · View at Google Scholar
  33. R. P. Srivastava, Neelima, and A. P. Bhaduri, “Synthetic applications of 2-chloro-3-formylquinoline,” Journal of Heterocyclic Chemistry, vol. 24, pp. 219–222, 1987. View at Publisher · View at Google Scholar
  34. K. R. Rao, N. Bhanumathi, and P. B. Sattur, “Synthesis of novel quino[2,3-b][1,5]benzodiazepin-12-ones,” Journal of Heterocyclic Chemistry, vol. 28, pp. 1339–1340, 1991. View at Publisher · View at Google Scholar
  35. R. P. Srivastava, Neelima, and A. P. Bhaduri, “Reactions of 2-chloro-3-formylquinolines,” Indian Journal of Chemistry B, vol. 26, pp. 418–422, 1987. View at Google Scholar
  36. R. P. Srivastava, Neelima, and A. P. Bhaduri, “A convenient synthesis of 2,3-disubstituted benzo[b][1,8]naphthyridines; a novel annelation reaction of 2,3-disubstituted quinolines,” Synthesis, vol. 5, pp. 512–514, 1987. View at Publisher · View at Google Scholar
  37. G. R. Rao and K. S. Rao, “Synthesis and biological activity of quino[3,2-f]-1,2,4-triazolo[3,4-b]thiadiazepines: a novel tetracyclic ring system,” Indian Journal of Pharmaceutical Sciences, vol. 53, pp. 37–39, 1991. View at Google Scholar
  38. A. M. Farghaly, N. S. Habib, A. A. B. Hazzaa, and O. A. El-Sayed, “A convenient novel method for the synthesis of 1H-pyrazolo[3,4-b]quinoline and its derivatives,” Alexandria Journal of Pharmaceutical Sciences, vol. 3, pp. 84–86, 1989. View at Google Scholar
  39. Wright and T. L. EP, 120484, 1984, http://worldwide.espacenet.com/numberSearch?locale=en_EP.
  40. B. B. Neelima and A. P. Bhaduri, “Reactions of 2-chloro-3-formylquinolines,” Indian Journal of Chemistry B, vol. 23, p. 431, 1984. View at Google Scholar
  41. I. Torrini, G. P. Zecchini, and M. P. Paradisi, “The condensation products of 2-chloro-3-formylquinolines with o-aminothiophenol,” Heterocycles, vol. 27, no. 2, pp. 401–405, 1988. View at Google Scholar · View at Scopus
  42. G. P. Zecchini, I. Torrini, and M. P. Paradisi, “Synthesis of quino/2,3-b_//1,5/benzoxazepines: a novel tetracyclic ring system,” Heterocycles, vol. 26, no. 9, pp. 2443–2447, 1987. View at Google Scholar · View at Scopus
  43. N. Bhanumathi, K. R. Rao, and P. B. Sattur, “Novel formation of 11,12-dihydro-6H-quino[2,3-b] [1,5] benzodiazepines: reaction of 2-chloroquinoline-3-carbaldehydes with o-phenylenediamine,” Heterocycles, vol. 24, no. 6, pp. 1683–1685, 1986. View at Google Scholar · View at Scopus
  44. K. R. Prasad and M. Darbarwar, “Synthesis of [1]benzopyrano[3,4-h]benzo[b]-1,6-naphthyridine-6-ones,” Organic Preparations and Procedures International, vol. 27, no. 5, pp. 547–550, 1995. View at Publisher · View at Google Scholar