Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013 (2013), Article ID 903210, 9 pages
http://dx.doi.org/10.1155/2013/903210
Research Article

Synthesis and Evaluation of Molecularly Imprinted Polymer for the Determination of the Phthalate Esters in the Bottled Beverages by HPLC

1Henan Institute of Science and Technology, Xinxiang 453003, China
2Pesticide Research Institute, Hunan Agricultural University, Changsha 410128, China
3Hunan Institute of Humanities, Science and Technology, Loudi 417000, China

Received 18 October 2012; Accepted 24 February 2013

Academic Editor: Manuela Curcio

Copyright © 2013 Ya-Feng Jin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Nishioka, C. Iwahara, M. Kawasaki et al., “Di-(2-ethylhexyl) phthalate induces production of inflammatory molecules in human macrophages,” Inflammation Research, vol. 61, pp. 69–78, 2012. View at Publisher · View at Google Scholar
  2. F. Zeng, K. Cui, Z. Xie et al., “Phthalate esters (PAEs): emerging organic contaminants in agricultural soils in peri-urban areas around Guangzhou, China,” Environmental Pollution, vol. 156, no. 2, pp. 425–434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Ostrovský, R. Čabala, R. Kubinec et al., “Determination of phthalate sum in fatty food by gas chromatography,” Food Chemistry, vol. 124, no. 1, pp. 392–395, 2011. View at Publisher · View at Google Scholar
  4. A. Mehdinia, F. Roohi, and A. Jabbari, “Rapid magnetic solid phase extraction with in situ derivatization of methylmercury in seawater by Fe3O4/polyaniline nanoparticle,” Journal of Chromatography A, vol. 1218, no. 28, pp. 4269–4274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Zhang, W. P. Low, and H. K. Lee, “Evaluation of sulfonated graphene sheets as sorbent for micro-solid-phase extraction combined with gas chromatographymass spectrometry,” Journal of Chromatography A, vol. 1233, pp. 16–21, 2012. View at Publisher · View at Google Scholar
  6. Q. Liu, J. Shi, L. Zeng, T. Wang, Y. Cai, and G. Jiang, “Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes,” Journal of Chromatography A, vol. 1218, no. 2, pp. 197–204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. A. Anderson, M. M. Ariffin, P. A. G. Cormack, and E. I. Miller, “Comparison of molecularly imprinted solid-phase extraction (MISPE) with classical solid-phase extraction (SPE) for the detection of benzodiazepines in post-mortem hair samples,” Forensic Science International, vol. 174, no. 1, pp. 40–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Rodriguez, M. C. Moreno-Bondi, and M. D. Marazuela, “Multiresidue determination of fluoroquinolone antimicrobials in baby foods by liquid chromatography,” Food Chemistry, vol. 127, no. 3, pp. 1354–1360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Yan, M. Tian, and K. H. Row, “Selective solid-phase extraction of glabridin from licorice root using molecularly imprinted polymer,” Separation Science and Technology, vol. 44, no. 2, pp. 359–369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Blasco, P. Vazquez-Roig, M. Onghena, A. Masia, and Y. Picó, “Analysis of insecticides in honey by liquid chromatography-ion trap-mass spectrometry: comparison of different extraction procedures,” Journal of Chromatography A, vol. 1218, no. 30, pp. 4892–4901, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Vidal, M. Riekkola, and A. Canals, “Ionic liquid-modified materials for solid-phase extraction and separation: a review,” Analytica Chimica Acta, vol. 715, pp. 19–41, 2012. View at Publisher · View at Google Scholar
  12. R. Ramautar, G. J. de Jong, and G. W. Somsen, “Developments in coupled solid-phase extraction-capillary electrophoresis 2009–2011,” Electrophoresis, vol. 33, pp. 243–250, 2012. View at Publisher · View at Google Scholar
  13. R. Barro, S. Ares, C. Garcia-Jares, M. Llompart, and R. Cela, “Development of a sensitive methodology for the analysis of chlorobenzenes in air by combination of solid-phase extraction and headspace solid-phase microextraction,” Journal of Chromatography A, vol. 1045, no. 1-2, pp. 189–196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. Khorrami and M. Edrisi, “Synthesis and evaluation of a molecularly imprinted polymer for solid phase extraction of ethopabate from chicken tissue,” Separation Science and Technology, vol. 45, no. 3, pp. 404–412, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Wolska and M. B. Jak, “Sorption of phthalates on molecularly imprinted polymers,” Separation Science and Technology, vol. 47, pp. 1316–1321, 2012. View at Google Scholar
  16. R. Say, A. Ersöz, I. Şener, A. Atilir, S. Diltemiz, and A. Denizli, “Comparison of adsorption and selectivity characteristics for 4-nitrophenol imprinted polymers prepared via bulk and suspension polymerization,” Separation Science and Technology, vol. 39, no. 15, pp. 3471–3484, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Turiel and A. Martín-Esteban, “Molecularly imprinted polymers for sample preparation: a review,” Analytica Chimica Acta, vol. 668, no. 2, pp. 87–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Jiang, N. Jiang, H. Zhang, and M. Liu, “Small organic molecular imprinted materials: their preparation and application,” Analytical and Bioanalytical Chemistry, vol. 389, pp. 355–368, 2005. View at Google Scholar
  19. J. P. Lai, M. L. Yang, R. Niessner, and D. Knopp, “Molecularly imprinted microspheres and nanospheres for di(2-ethylhexyl) phthalate prepared by precipitation polymerization,” Analytical and Bioanalytical Chemistry, vol. 389, no. 2, pp. 405–412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Yan, X. Cheng, and G. Yang, “Dummy molecularly imprinted solid phase extraction for selective determination of five phthalate esters in plastic bottled functional beverages,” Journal of Agricultural and Food Chemistry, vol. 60, pp. 5524–5531, 2012. View at Publisher · View at Google Scholar
  21. P. Qi, J. Wang, Y. Li, F. Su, J. Jin, and J. Chen, “Molecularly imprinted solid phase extraction coupled with HPLC for the selective determination of monobutyl phthalate in bottled water,” Journal of Separation Science, vol. 34, no. 19, pp. 2712–2718, 2011. View at Publisher · View at Google Scholar
  22. J. He, R. Lv, H. Zhan et al., “Preparation and evaluation of molecularly imprinted solid-phase micro-extraction fibers for selective extraction of phthalates in an aqueous sample,” Analytica Chimica Acta, vol. 674, no. 1, pp. 53–58, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. He, R. Lv, J. Zhu, and K. Lu, “Selective solid-phase extraction of dibutyl phthalate from soybean milk using molecular imprinted polymers,” Analytica Chimica Acta, vol. 661, no. 2, pp. 215–221, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Shaikh, N. Memon, H. Khan, M. I. Bhanger, and S. M. Nizamani, “Preparation and characterization of molecularly imprinted polymer for di(2-ethylhexyl) phthalate: application to sample clean-up prior to gas chromatographic determination,” Journal of Chromatography A, vol. 1247, pp. 125–133, 2012. View at Publisher · View at Google Scholar
  25. A. R. Khorrami and S. Mehrseresht, “Synthesis and evaluation of a selective molecularly imprinted polymer for the contraceptive drug levonorgestrel,” Journal of Chromatography B, vol. 867, no. 2, pp. 264–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Farrington, E. Magner, and F. Regan, “Predicting the performance of molecularly imprinted polymers: selective extraction of caffeine by molecularly imprinted solid phase extraction,” Analytica Chimica Acta, vol. 566, no. 1, pp. 60–68, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Spivak, M. A. Gilmore, and K. J. Shea, “Evaluation of binding and origins of specificity of 9-ethyladenine imprinted polymers,” Journal of the American Chemical Society, vol. 119, no. 19, pp. 4388–4393, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Crescenzi, S. Bayoudh, P. A. G. Cormack, T. Klein, and K. Ensing, “Determination of clenbuterol in bovine liver by combining matrix solid-phase dispersion and molecularly imprinted solid-phase extraction followed by liquid chromatography/electrospray ion trap multiple-stage mass spectrometry,” Analytical Chemistry, vol. 73, no. 10, pp. 2171–2177, 2001. View at Publisher · View at Google Scholar · View at Scopus