Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 917970, 7 pages
http://dx.doi.org/10.1155/2013/917970
Research Article

Functionalization of Carboxylated Multi-Wall Nanotubes with Derivatives of N1-(11H-Indeno[1,2-b]quinoxalin-11-ylidene)benzene-1,4-diamine

1Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box 19395-1775, Tehran, Iran
2Department of Chemistry, Mahshahr Branch, Islamic Azad University, P.O. Box 6351977439, Mahshahr, Iran

Received 29 November 2011; Revised 26 June 2012; Accepted 27 June 2012

Academic Editor: Juan Ricardo Rodrigues

Copyright © 2013 Javad Azizian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Direct synthesis of long single-walled carbon nanotube strands,” Science, vol. 296, no. 5569, pp. 884–886, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Bianco, K. Kostarelos, and M. Prato, “Applications of carbon nanotubes in drug delivery,” Current Opinion in Chemical Biology, vol. 9, no. 6, pp. 674–679, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Hirsch, “Functionalization of single-walled carbon nanotubes,” Angewandte Chemie—International Edition, vol. 41, no. 11, pp. 1853–1859, 2002. View at Google Scholar · View at Scopus
  4. Y. Gogotsi, Carbon Nanomaterials, Taylor and Francis Group, LLC, Boca Raton, Fla, USA, 2006.
  5. M. A. Hamon, J. Chen, H. Hu et al., “Dissolution of single-walled carbon nanotubes,” Advanced Materials, vol. 11, no. 10, pp. 834–840, 1999. View at Google Scholar · View at Scopus
  6. A. Kuznetsova, I. Popova, J. T. Yates et al., “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies,” Journal of the American Chemical Society, vol. 123, no. 43, pp. 10699–10704, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. L. Stevens, A. Y. Huang, H. Peng, I. W. Chiang, V. N. Khabashesku, and J. L. Margrave, “Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines,” Nano Letters, vol. 3, no. 3, pp. 331–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Hamon, H. Hui, P. Bhowmik, H. M. E. Itkis, and R. C. Haddon, “Ester-functionalized soluble single-walled carbon nanotubes,” Applied Physics A, vol. 74, no. 3, pp. 333–338, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S. A. Kotharkar and D. B. Shinde, “Synthesis of antimicrobial 2, 9, 10-trisubstituted-6-oxo-7, 12-dihydro-chromeno[3, 4-b]quinoxalines,” Bioorganic & Medicinal Chemistry Letters, vol. 16, no. 24, pp. 6181–6184, 2006. View at Google Scholar
  10. B. Zarranz, A. Jaso, I. Aldana, and A. Monge, “Synthesis and anticancer activity evaluation of new 2-alkylcarbonyl and 2-benzoyl-3-trifluoromethyl-quinoxaline 1,4-di-N-oxide derivatives,” Bioorganic and Medicinal Chemistry, vol. 12, no. 13, pp. 3711–3721, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Zarranz, A. Jaso, I. Aldana et al., “Synthesis and antimalarial activity of new 3-arylquinoxaline-2-carbonitrile derivatives,” Arzneimittel-Forschung, vol. 55, no. 12, pp. 754–761, 2005. View at Google Scholar · View at Scopus
  12. F. Beaulieu, C. Ouellet, E. H. Ruediger et al., “Synthesis and biological evaluation of 4-amino derivatives of benzimidazoquinoxaline, benzimidazoquinoline, and benzopyrazoloquinazoline as potent IKK inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 5, pp. 1233–1237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Carta, S. Piras, G. Loriga, and G. Paglietti, “Chemistry, biological properties and SAR analysis of quinoxalinones,” Mini-Reviews in Medicinal Chemistry, vol. 6, no. 11, pp. 1179–1200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Zanetti, L. A. Sechi, P. Molicotti et al., “In vitro activity of new quinoxalin 1,4-dioxide derivatives against strains of Mycobacterium tuberculosis and other mycobacteria,” International Journal of Antimicrobial Agents, vol. 25, no. 2, pp. 179–181, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. H. Fisher, A. Lusi, and J. R. Egerton, “Anthelmintic dihydroquinoxalino(2,3-b)quinoxalines,” Journal of Pharmaceutical Sciences, vol. 66, no. 9, pp. 1349–1352, 1977. View at Google Scholar · View at Scopus
  16. R. H. Bahekar, M. R. Jain, A. A. Gupta et al., “Synthesis and antidiabetic activity of 3,6,7-trisubstituted-2-(1H-imidazol- 2-ylsulfanyl)quinoxalines and quinoxalin-2-yl isothioureas,” Archiv der Pharmazie, vol. 340, no. 7, pp. 359–366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. F. Bigge, T. C. Malone, P. A. Boxer et al., “Synthesis of 1,4,7,8,9,10-hexahydro-9-methyl-6-nitropyrido[3,4-f]-quinoxaline-2,3-dione and related quinoxalinediones: characterization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (and N-methyl-D-aspartate) receptor and anticonvulsant activity,” Journal of Medicinal Chemistry, vol. 38, no. 19, pp. 3720–3740, 1995. View at Google Scholar · View at Scopus
  18. A. Rajasekaran, “Synthesis, antinociceptive, antiinflammatory and antiepileptic evaluation of some novel indeno[1, 2-b] quinoxalin-11-ylidenamines,” Iranian Journal of Pharmaceutical Sciences Autumn, vol. 3, no. 4, pp. 251–262, 2007. View at Google Scholar
  19. J. Azizian, H. Tahermansouri, E. Biazar, S. Heidari, and D. C. Khoei, “Functionalization of carboxylated multiwall nanotubes with imidazole derivatives and their toxicity investigations,” International Journal of Nanomedicine, vol. 5, no. 1, pp. 907–914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C.-Y. Hu, Y.-J. Xu, S.-W. Duo, R.-F. Zhang, and M.-S. Li, “Non-covalent functionalization of carbon nanotubes with surfactants and polymers,” Journal of the Chinese Chemical Society, vol. 56, no. 2, pp. 234–239, 2009. View at Google Scholar · View at Scopus
  21. M. Holzinger, O. Vostrowsky, A. Hirsch et al., “Sidewall functionalization of carbon nanotubes this work was supported by the European Union under the 5th Framework Research Training Network 1999, HPRNT, 1999-00011 FUNCARS,” Angewandte Chemie International Edition, vol. 40, no. 21, pp. 4002–4005, 2001. View at Google Scholar
  22. Y.-P. Sun, K. Fu, Y. Lin, and W. Huang, “Functionalized carbon nanotubes: properties and applications,” Accounts of Chemical Research, vol. 35, no. 12, pp. 1096–1104, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Characterizing carbon nanotube samples with resonance Raman scattering,” New Journal of Physics, vol. 5, pp. 139.1–139.17, 2003. View at Google Scholar · View at Scopus
  24. S.-I. Tamaru, M. Takeuchi, M. Sano, and S. Shinkai, “Sol-gel transcription of sugar-appended porphyrin assemblies into fibrous silica: unimolecular stacks versus helical bundles as templates,” Angewandte Chemie—International Edition, vol. 41, no. 5, pp. 853–856, 2002. View at Google Scholar · View at Scopus
  25. M. A. Hamon, J. Chen, H. Hu et al., “Dissolution of single-walled carbon nanotubes,” Advanced Materials, vol. 11, no. 10, pp. 834–840, 1999. View at Google Scholar · View at Scopus
  26. M. A. Hamon, H. Hu, P. Bhowmik et al., “End-group and defect analysis of soluble single-walled carbon nanotubes,” Chemical Physics Letters, vol. 347, no. 1–3, pp. 8–12, 2001. View at Publisher · View at Google Scholar · View at Scopus