Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 938237, 8 pages
Research Article

Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

1College of Petroleum Engineering, China University of Petroleum, Qingdao 266555, China
2Zhuangxi Oil Production Plant, Shengli Oilfield, Sinopec, Dongying 257237, China
3Xinchun Production Plant, Shengli Oilfield, Sinopec, China

Received 21 March 2013; Accepted 25 June 2013

Academic Editor: Ibnelwaleed Ali Hussien

Copyright © 2013 Yong Du et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD) sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s); however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s) performed well in both the low- and medium-permeability (approximately 1000 mD) sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.