Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2013, Article ID 971805, 8 pages
http://dx.doi.org/10.1155/2013/971805
Research Article

Stability of O/W Emulsion with Synthetic Perfumes Oxidized by Singlet Oxygen

1Faculty of Biomedical Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama 225-8503, Japan
2Biomedical Engineering Center, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama 225-8503, Japan
3Institute of International Science Education, International Pacific University, TOC Building 16F, 1-1-7 Sakuragi-cho, Naka-ku, Yokohama 231-8331, Japan

Received 21 December 2012; Accepted 29 January 2013

Academic Editor: Stoyan Karakashev

Copyright © 2013 Naoki Watabe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Bpnnett, Chmical Aspects of Photodtnamic Therapy, CRC Press, Boca Raton, Fla, USA, 2000.
  2. Y. Tokuoka, A. Niitsu, N. Watabe, T. N. Murakami, and N. Kawashima, “ESR spectroscopy of singlet oxygen generated by protoporphyrin IX in aqueous surfactant solutions,” Journal of Oleo Science, vol. 52, no. 3, pp. 135–140, 2003. View at Google Scholar
  3. Y. Takashima, “Flavor,” Yukagaku, vol. 41, no. 9, pp. 969–975, 1992. View at Google Scholar
  4. M. Okamura, T. Maruyama, S. Wakabayashi, K. Ikushima I, and Okura, “Evaluation by 1H-NMR of the effects of cyclodextrin inclusion complexes on the volatility and thermal stability of guest compounds,” Nippon Nogeikagaku Kaishi, vol. 67, no. 12, pp. 1713–1719, 1993. View at Google Scholar
  5. J. N. Labows, J. C. Brahms, and R. H. Cagan, “Solubilization of fragrances by surfactants,” in Surfactants in Cosmetics, Marcel Dekker, New York, NY, USA, 1996. View at Google Scholar
  6. J. M. Behan, J. N. Ness, K. D. Perring, and W. M. Smith, “Perfumed structured emulsion in personal products,” United States Patent, Patent number: 5190915.
  7. J. M. Behan, J. N. Ness, K. D. Perring, and W. N. Ness, “Process for preparing perfumed detergent products,” United States Patent, Patent number: 5288423.
  8. Friberg, “Vapour pressure of some fragrance ingredients in emulsion and microemulsion formulations,” International Journal of Cosmetic Science, vol. 19, no. 2, pp. 75–86, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. S. E. Friberg, Z. Zhang, L. Ganzuo, and P. A. Aikens, “Stability factors and vapor pressures in a model fragrance emulsion system,” Journal of Cosmetic Science, vol. 50, no. 4, pp. 203–219, 1999. View at Google Scholar · View at Scopus
  10. Z. Zhang, T. Denler, S. E. Friberg, and P. Aikens, “Phase diagram and emulsion stability of surfactant-fragrance systems,” International Journal of Cosmetic Science, vol. 22, no. 2, pp. 105–119, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Al-Bawab, N. Heldt, and Y. Li, “Emulsified orange oil in an aqueous vesicle solution,” Journal of Dispersion Science and Technology, vol. 26, no. 2, pp. 251–256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. C. Sharma and G. G. Warr, “Phase behavior, self-assembly, and emulsification of tween 80/water mixtures with limonene and perfluoromethyldecalin,” Langmuir, vol. 28, no. 32, pp. 11707–11713, 2012. View at Google Scholar
  13. N. Watabe, Y. Tokuoka, and N. Kawashima, “Influence of synthetic perfumes on stability of O/W emulsion in sodium dodecyl sulfate-n-dodecane-water ternary systems,” Colloid and Polymer Science, vol. 286, no. 6-7, pp. 769–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Fujimoto, New Introduction to Surface Active Agents, Sanyo Chemical Industries, Kyoto, Japan, 1985.
  15. H. Inoue, K. Uehara, and M. Nango, Separation Method of Organic Compounds, Shokabo, Tokyo, Japan, 1990.
  16. S. R. Reddy and H. S. Fogler, “Emulsion stability: determination from turbidity,” Journal of Colloid and Interface Science, vol. 79, no. 1, pp. 101–104, 1981. View at Google Scholar · View at Scopus
  17. Y. Tokuoka, H. Uchiyama, and M. Abe, “Solubilization of some synthetic perfumes by anionic-nonionic mixed surfactant systems. 2,” The Journal of Physical Chemistry, vol. 98, no. 24, pp. 6167–6171, 1994. View at Google Scholar · View at Scopus
  18. L. M. Stephenson, M. J. Grdina, and M. Orfanopoulos, “Mechanism of the ene reaction between singlet oxygen and olefins,” Accounts of Chemical Research, vol. 13, no. 11, pp. 419–425, 1980. View at Google Scholar · View at Scopus
  19. M. N. Alberti and M. Orfanopoulos, “Unraveling the mechanism of the singlet oxygen ene reaction: recent computational and experimental approaches,” Chemistry: A European Journal, vol. 16, no. 31, pp. 9414–9421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. N. Alberti and M. Orfanopoulos, “Singlet oxygen-mediated allylic oxidation,” in CRC Handbook of Organic Photochemistry and Photobiology, vol. 1, pp. 765–787, CRC Press, Taylor and Francis, Boca Raton, Fla, USA, 3rd edition, 2012. View at Google Scholar
  21. M. R. Iesce and F. Cermola, “Photooxygenation, [2+2] and [4+2],” in CRC Handbook of Organic Photochemistry and Photobiology, vol. 1, pp. 727–764, CRC Press, Taylor and Francis, Boca Raton, Fla, USA, 3rd edition, 2012. View at Google Scholar
  22. Hamaker, “The London-van der Waals attraction between spherical particles,” Physica, vol. 4, no. 10, pp. 1058–1072, 1937. View at Google Scholar · View at Scopus
  23. S. Tarimala and L. L. Dai, “Structure of microparticles in solid-stabilized emulsions,” Langmuir, vol. 20, no. 9, pp. 3492–3494, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Abe, Y. Tokuoka, H. Uchiyama, and K. Ogino, “Solubilization of synthetic perfumes by sodium dodecyl sulfate,” Yukagaku, vol. 39, no. 8, pp. 565–571, 1990. View at Google Scholar
  25. Y. Tokuoka, H. Uchiyama, M. Abe, and K. Ogino, “Solubilization of synthetic perfumes by nonionic surfactants,” Journal of Colloid And Interface Science, vol. 152, no. 2, pp. 402–409, 1992. View at Google Scholar · View at Scopus
  26. M. Szymula, J. Szczypa, and S. E. Friberg, “A comparison of atmospheric and electrochemical oxidation of vitamin C in SDS systems,” Journal of Dispersion Science and Technology, vol. 23, no. 6, pp. 789–797, 2002. View at Publisher · View at Google Scholar · View at Scopus