Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2014, Article ID 124790, 8 pages
http://dx.doi.org/10.1155/2014/124790
Research Article

Syntheses, Characterization, and Biological Activities of Metal Complexes of N-(2-Carbamoylthienyl)-C-(3′-carboxy-2′-hydroxyphenyl) Azetidin-2-one with Some Di-, Tetra-, and Hexavalent Metal Ions

1Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana 136119, India
2Department of Chemistry, Haryana College of Technology & Management, Kaithal, Haryana 136027, India

Received 7 May 2013; Revised 14 November 2013; Accepted 14 November 2013; Published 12 February 2014

Academic Editor: Peruma Rajakumar

Copyright © 2014 Dinesh Kumar and Amit Kumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. G. Mata, M. Fraga, and C. M. L. Delpiccolo, “An efficient, stereoselective solid-phase synthesis of β-lactams using Mukaiyama's salt for the staudinger reaction,” Journal of Combinatorial Chemistry, vol. 5, no. 3, pp. 208–210, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Sharma, P. Kumar, and B. Narasimhan, “Synthesis and antibacterial evaluation of Cu(II) and Zn(II) complexes of the β-lactum antibiotic, cefdinir,” Medicinal Chemistry Research, vol. 21, no. 6, pp. 796–803, 2012. View at Publisher · View at Google Scholar
  3. F. H. Havaldar and S. K. J. Mishra, “Synthesis of some azetidin-2-ones and thiazolidin-4-ones as potential antimicrobial agents,” Indian Journal of Heterocyclic Chemistry, vol. 13, no. 3, pp. 197–200, 2004. View at Google Scholar · View at Scopus
  4. J. R. Anacona and J. Serrano, “Synthesis and antibacterial activity of metal complexes of cephalothin,” Journal of Coordination Chemistry, vol. 56, no. 4, pp. 313–320, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. N. Kumaraswamy, V. P. Vaidya, C. Chandrasekhar, D. A. Prathima Mathias, H. Shivakumar, and K. M. Mahadevan, “Synthesis and pharmacological investigations of azetidinone derivatives involving naphtho[2,1-b]furan-2-carboxamide,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 4, no. 1, p. 90, 2013. View at Google Scholar
  6. J. R. Anacona and H. Rodriguez, “Metalloantibiotics: synthesis and antibacterial activity of cefepime metal complexes,” Journal of Coordination Chemistry, vol. 62, no. 13, pp. 2212–2219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. H. Brown, W. E. Smith, J. W. Teape, and A. J. Lewis, “Antiinflammatory effects of some copper complexes,” Journal of Medicinal Chemistry, vol. 23, no. 7, pp. 729–734, 1980. View at Google Scholar · View at Scopus
  8. D. Kumar, A. Syamal, A. Kumar, P. K. Gupta, and D. Dass, “Syntheses and characterization of coordination compounds of N-(2-mercaptoethyl)-4-(3′-carboxy-2′-hydroxyphenyl)-2-azetidinone,” Journal of the Indian Chemical Society, vol. 87, no. 4, pp. 417–423, 2010. View at Google Scholar · View at Scopus
  9. A. I. Vogel, A Textbook of Quantitative Inorganic Analysis, ELBS and Longman, London, UK, 1978.
  10. F. G. Mann and B. C. Saunders, Practical Organic Chemistry, Longmans, London, UK, 1961.
  11. R. L. Dutta and A. Syamal, Elements of Magnetochemistry, Affiliated East West Press, New Delhi, India, 2nd edition, 1993.
  12. Z. H. Chohan and C. T. Supuran, “Metalloantibiotics: synthesis, characterization and in-vitro antibacterial studies on cobalt (II), copper (II), nickel (II) and zinc (II) complexes with cloxacillin,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 21, no. 4, pp. 441–448, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Jayachandran, L. V. G. Nargund, A. Roy, G. M. Sreenivasa, and K. Krupanidhi, “Synhesis of 1-[6'-fluoro-7' substituted- (1,3') benzothiazol-2-yl] amino-4-substituted-3 chloro azetidin-2-one for antimicrobial screening,” Oriental Journal of Chemistry, vol. 23, no. 3, pp. 829–835, 2007. View at Google Scholar
  14. P. J. Bahad, N. S. Bhave, and A. S. Aswar, “Synthesis, structural and electrical studies of cobalt-, nickel-, copper- and zinc(II) polymeric complexes,” Journal of the Indian Chemical Society, vol. 77, no. 8, pp. 363–366, 2000. View at Google Scholar · View at Scopus
  15. D. Kumar, A. Syamal, A. Kumar, D. Dass, and A. Gupta, “Spectral studies on metal complexes of a newly synthesized azetidinone,” Asian Journal of Chemistry, vol. 21, no. 9, pp. 7345–7353, 2009. View at Google Scholar · View at Scopus
  16. Z. H. Chohan, C. T. Supuran, and A. Scozzafava, “Metalloantibiotics: synthesis and antibacterial activity of cobalt(II), copper(II), nickel(II) and zinc(II) complexes of kefzol,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 19, no. 1, pp. 79–84, 2004. View at Publisher · View at Google Scholar
  17. J. R. Anacona and M. Lopez, “Mixed-ligand nickel(II) complexes containing sulfathiazole and cephalosporin antibiotics: synthesis, characterization, and antibacterial activity,” International Journal of Inorganic Chemistry, vol. 2012, Article ID 106187, 8 pages, 2012. View at Publisher · View at Google Scholar
  18. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley, New York, NY, USA, 4th edition, 1986.
  19. D. Kumar, A. Kumar, and J. Sharma, “Physico-chemical studies on the coordination compounds of thiazolidin-4-one,” Journal of Chemistry, vol. 2013, Article ID 870325, 7 pages, 2013. View at Publisher · View at Google Scholar
  20. D. Kumar and A. Kumar, “Syntheses, magnetic and spectral studies on the coordination compounds of the polystyrene-anchored thiazolidin-4-one,” E-Journal of Chemistry, vol. 9, no. 4, pp. 2532–2539, 2012. View at Publisher · View at Google Scholar
  21. D. Kumar, A. Kumar, and D. Dass, “Syntheses and characterization of the coordination compounds of N-(2-hydroxymethylphenyl)-C-(3′-carboxy-2′-hydroxyphenyl)thiazolidin-4-one,” International Journal of Inorganic Chemistry, vol. 2013, Article ID 524179, 6 pages, 2013. View at Publisher · View at Google Scholar
  22. D. Kumar, A. Syamal, Jaipal, and L. K. Sharma, “Synthesis, magnetic and spectral studies on polystyrene-anchored coordination complexes of bi-, tri-, tetra- and hexavalent metal ions with unsymmetrical dibasic tetradentate ONNO donor Schiff base derived from 3-formylsalicylic acid, ethylenediamine and 2-benzoylacetanilide,” Journal of Chemical Sciences, vol. 121, no. 1, pp. 57–64, 2009. View at Publisher · View at Google Scholar
  23. A. Syamal and M. R. Maurya, “Dioxomolybdenum(VI) complexes with tridentate dibasic Schiff bases derived from various hydrazides,” Transition Metal Chemistry, vol. 11, no. 6, pp. 235–238, 1986. View at Publisher · View at Google Scholar
  24. K. Dey, B. K. Maity, and J. K. Bhar, “Oxocation complexes, Part X. Oxomolybdenum(V) and dioxomolybdenum(VI) complexes with tri- and tetra-dentate Schiff bases,” Transition Metal Chemistry, vol. 6, no. 6, pp. 346–351, 1981. View at Publisher · View at Google Scholar
  25. J. R. Ferraro, Low Frequency Vibrations of Inorganic and Coordination Compounds, Plenum Press, New York, NY, USA, 1971.
  26. B. J. K. Nag, S. Pal, and C. Sinha, “Synthesis and characterization of cobalt(II), nickel(II), copper(II), palladium(II) and dioxouranium(VI) complexes of the antipyrine Schiff base of 3-formylsalicylic acid,” Transition Metal Chemistry, vol. 30, no. 5, pp. 523–526, 2005. View at Publisher · View at Google Scholar
  27. D. Kumar, A. Syamal, A. Gupta, M. Rani, and P. K. Gupta, “Role of pH on the formation of the coordination compounds with the Schiff base derived from 3-formylsalicylic acid and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one,” Journal of the Indian Chemical Society, vol. 87, no. 10, pp. 1185–1197, 2010. View at Google Scholar · View at Scopus
  28. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, The Netherlands, 2nd edition, 1984.
  29. J. E. Huheey, Inorganic Chemistry, Principles of Structure and Reactivity, Harper and Row, New York, NY, USA, 3rd edition, 1983.
  30. M. Todokora, H. Saiyama, N. Matsumoto, M. Kodeva, H. Okawa, and S. Kida, “Template synthesis of copper(II)lead(II) complexes of new binucleating macrocycles with dissimilar co-ordination sites,” Journal of the Chemical Society, Dalton Transactions, no. 2, pp. 313–317, 1992. View at Publisher · View at Google Scholar
  31. P. Athappan, S. Sevagapandian, and G. Rajgopal, “Synthesis and spectral studies of copper(II), nickel(II), cobalt(II) and vanadyl(II) complexes of tridentate Schiff bases of 1,2,3,5,6,7,8,8a-octahydro-3-oxo-N,1-diphenyl-5-(phenylmethylene)-2-naphthalenecarboxamide,” Transition Metal Chemistry, vol. 20, no. 5, pp. 472–476, 1995. View at Publisher · View at Google Scholar
  32. F. Cotton, A. G. Wilkinson, C. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, John Wiley, New York, NY, USA, 6th edition, 1999.