Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2014, Article ID 536134, 8 pages
http://dx.doi.org/10.1155/2014/536134
Research Article

Construction of Differential-Methylation Subtractive Library

1School of Life Sciences, Lanzhou University, Lanzhou 730000, China
2Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Nangang District, Harbin 150081, China

Received 16 May 2014; Accepted 23 June 2014; Published 9 July 2014

Academic Editor: Wang Zhenhua

Copyright © 2014 Wei Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. J. Richards, “DNA methylation and plant development,” Trends in Genetics, vol. 13, no. 8, pp. 319–323, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. E. J. Finnegan, R. K. Genger, W. J. Peackock, and E. S. Dennis, “DNA methylation in plants,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 49, pp. 223–247, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Feng, S. J. Cokus, X. Zhang et al., “Conservation and divergence of methylation patterning in plants and animals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, pp. 8689–8694, 2010. View at Publisher · View at Google Scholar
  4. T. Kakutani, J. A. Jeddeloh, S. K. Flowers, K. Munakata, and E. J. Richards, “Developmental abnormalities and epimutations associated with DNA hypomethylation mutations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, pp. 12406–12411, 1996. View at Publisher · View at Google Scholar
  5. D. Leljak-Levanić, N. Bauer, S. Mihaljević, and S. Jelaska, “Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L.,” Plant Cell Reports, vol. 23, no. 3, pp. 120–127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Paszkowski and S. A. Whitham, “Gene silencing and DNA methylation processes,” Current Opinion in Plant Biology, vol. 4, no. 2, pp. 123–129, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. P. Jost and H. P. Saluz, DNA Methylation: Molecular Biology and Biological Significance, Birkhauser, 1993.
  8. E. J. Finnegan, W. J. Peacock, and E. S. Dennis, “DNA methylation, a key regulator of plant development and other processes,” Current Opinion in Genetics and Development, vol. 10, no. 2, pp. 217–223, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. I. A. Hafiz, M. A. Anjum, A. G. Grewal, and G. A. Chaudhary, “DNA methylation—an essential mechanism in plant molecular biology,” Acta Physiologiae Plantarum, vol. 23, no. 4, pp. 491–499, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. R. A. Martienssen and V. Colot, “DNA methylation and epigenetic inheritance in plants and filamentous fungi,” Science, vol. 293, no. 5532, pp. 1070–1074, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Franco, O. Schoneveld, A. G. Georgakilas, and M. I. Panayiotidis, “Oxidative stress, DNA methylation and carcinogenesis,” Cancer Letters, vol. 266, no. 1, pp. 6–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Wang, Y. Pan, X. Zhao et al., “Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.),” Journal of Experimental Botany, vol. 62, no. 6, pp. 1951–1960, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Kovařik, B. Koukalová, M. Bezděk, and Z. Opatrny, “Hypermethylation of tobacco heterochromatic loci in response to osmotic stress,” Theoretical and Applied Genetics, vol. 95, pp. 301–306, 1997. View at Publisher · View at Google Scholar
  14. I. R. Henderson and C. Dean, “Control of Arabidopsis flowering: the chill before the bloom,” Development, vol. 131, no. 16, pp. 3829–3838, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. O. V. Dyachenko, N. S. Zakharchenko, T. V. Shevchuk, H. J. Bohnert, J. C. Cushman, and Y. I. Buryanov, “Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress,” Biochemistry, vol. 71, no. 4, pp. 461–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Choi and H. Sano, “Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants,” Molecular Genetics and Genomics, vol. 277, no. 5, pp. 589–600, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Wang, L. Qin, C. Xie et al., “Induced and constitutive DNA methylation in a salinity tolerant wheat introgression line,” Plant and Cell Physiology, 2014. View at Publisher · View at Google Scholar
  18. L. Zhong, Y. H. Xu, and J. B. Wang, “The effect of 5-azacytidine on wheat seedlings responses to NaCl stress,” Biologia Plantarum, vol. 54, no. 4, pp. 753–756, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. T. S. Smith, DNA methylation and transgenerational stress memories in Arabidopsis thaliana [Ph.D. dissertation], University of York, 2013.
  20. G. E. Reyna-López, J. Simpson, and J. Ruiz-Herrera, “Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms,” Molecular and General Genetics, vol. 253, no. 6, pp. 703–710, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Ushijima, K. Morimura, Y. Hosoya et al., “Establishment of methylation-sensitive-representational difference analysis and isolation of hypo- and hypermethylated genomic fragments in mouse liver tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 6, pp. 2284–2289, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Frommer, L. E. McDonald, D. S. Millar et al., “A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 5, pp. 1827–1831, 1992. View at Publisher · View at Google Scholar · View at Scopus
  23. P. S. Yan, C. M. Chen, H. Shi et al., “Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays,” Cancer Research, vol. 61, no. 23, pp. 8375–8380, 2001. View at Google Scholar · View at Scopus
  24. M. G. Murray and W. F. Thompson, “Rapid isolation of high molecular weight plant DNA,” Nucleic Acids Research, vol. 8, no. 19, pp. 4321–4326, 1980. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Diatchenko, Y. C. Lau, A. P. Campbell et al., “Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 12, pp. 6025–6030, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Gehring and S. Henikoff, “DNA methylation dynamics in plant genomes,” Biochimica et Biophysica Acta, vol. 1769, no. 5-6, pp. 276–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Holliday and J. E. Pugh, “DNA modification mechanisms and gene activity during development. Developmental clocks may depend on the enzymic modification of specific bases in repeated DNA sequences,” Science, vol. 187, no. 4173, pp. 226–232, 1975. View at Publisher · View at Google Scholar · View at Scopus
  28. J. B. Morel, P. Mourrain, C. Béclin, and H. Vaucheret, “DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis,” Current Biology, vol. 10, no. 24, pp. 1591–1594, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Bartee, F. Malagnac, and J. Bender, “Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene,” Genes and Development, vol. 15, no. 14, pp. 1753–1758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Agius, A. Kapoor, and J. Zhu, “Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 31, pp. 11796–11801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Kinoshita, H. Saze, T. Kinoshita et al., “Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats,” Plant Journal, vol. 49, no. 1, pp. 38–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. T.-F. Hsieh, C. A. Ibarra, P. Silva et al., “Genome-wide demethylation of Arabidopsis endosperm,” Science, vol. 324, no. 5933, pp. 1451–1454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. N. S. Akopyants, A. Fradkov, D. E. Berg et al., “PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 22, pp. 13108–13113, 1998. View at Publisher · View at Google Scholar · View at Scopus