Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2014, Article ID 749047, 6 pages
http://dx.doi.org/10.1155/2014/749047
Research Article

Changes in Antioxidant Enzyme Activity and Transcript Levels of Related Genes in Limonium sinense Kuntze Seedlings under NaCl Stress

Key Laboratory of Plant Molecular & Developmental Biology, College of Life Sciences, Yantai University, Yantai, Shandong 264005, China

Received 11 April 2014; Accepted 9 June 2014; Published 19 June 2014

Academic Editor: Wang Zhenhua

Copyright © 2014 Xia Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Hediye Sekmen, I. Türkan, and S. Takio, “Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media,” Physiologia Plantarum, vol. 131, no. 3, pp. 399–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. H. J. Bohnert, R. G. Jensen, T. J. Flowers, and A. R. Yeo, “Metabolic engineering for increased salt tolerance—the next step,” Australian Journal of Plant Physiology, vol. 23, no. 5, pp. 661–667, 1996. View at Google Scholar · View at Scopus
  3. J. A. Imlay, “Pathways of Oxidative Damage,” Annual Review of Microbiology, vol. 57, pp. 395–418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Melchiorre, G. Robert, V. Trippi, R. Racca, and H. R. Lascano, “Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state,” Plant Growth Regulation, vol. 57, no. 1, pp. 57–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. X.-F. Fan, Y.-L. Yang, and L.-X. Liu, “Tissue culture and rapid propagation of Limonium gmelinii (Willd.) Kuntze,” Plant Physiology Communications, vol. 44, no. 3, p. 509, 2008. View at Google Scholar · View at Scopus
  6. F. Ding and B. S. Wang, “Effect of NaCl on salt gland development and salt-secretion rate of the leaves of Limonium sinense,” Acta Botanica Boreali-Occidentalia Sinica, vol. 26, pp. 1593–1599, 2006 (Chinese). View at Google Scholar
  7. L. L. Zhou, P. Liu, and J. H. Lu, “A SEM observation of the salt-secreting structure of leaves in four species of Limonium,” Bulletin of Botanical Research, vol. 26, pp. 667–671, 2006 (Chinese). View at Google Scholar
  8. S. Gao, R. Yan, M. Cao, W. Yang, S. Wang, and F. Chen, “Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling,” Plant, Soil and Environment, vol. 54, no. 3, pp. 117–122, 2008. View at Google Scholar · View at Scopus
  9. R. L. Heath and L. Packer, “Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation,” Archives of Biochemistry and Biophysics, vol. 125, no. 1, pp. 189–198, 1968. View at Google Scholar · View at Scopus
  10. A. A. A. El-Mashad and H. I. Mohamed, “Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis),” Protoplasma, vol. 249, no. 3, pp. 625–635, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Zhang, S. Zhou, Y. Fu, Z. Su, X. Wang, and C. Sun, “Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.),” Plant Molecular Biology, vol. 62, no. 1-2, pp. 247–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Pilon, S. E. Abdel-Ghany, C. M. Cohu, K. A. Gogolin, and H. Ye, “Copper cofactor delivery in plant cells,” Current Opinion in Plant Biology, vol. 9, no. 3, pp. 256–263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Mittler, “Oxidative stress, antioxidants and stress tolerance,” Trends in Plant Science, vol. 7, no. 9, pp. 405–410, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Aghaei, A. A. Ehsanpour, and S. Komatsu, “Potato responds to salt stress by increased activity of antioxidant enzymes,” Journal of Integrative Plant Biology, vol. 51, no. 12, pp. 1095–1103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Wang, C. Wu, B. Xie et al., “Model analysing the antioxidant responses of leaves and roots of switchgrass to NaCl-salinity stress,” Plant Physiology and Biochemistry, vol. 58, pp. 288–296, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Mittal, N. Kumari, and V. Sharma, “Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes,” Plant Physiology and Biochemistry, vol. 54, pp. 17–26, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Demiral and İ. Türkan, “Comparative lipid peroxidation, antioxidant systems and proline content in roots of two rice cultivars differing in salt tolerance,” Environmental and Experimental Botany, vol. 53, no. 3, pp. 247–257, 2005. View at Publisher · View at Google Scholar
  19. Z. Lu, D. Liu, and S. Liu, “Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis,” Plant Cell Reports, vol. 26, no. 10, pp. 1909–1917, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. K. de Carvalho, M. K. F. de Campos, D. S. Domingues, L. F. P. Pereira, and L. G. E. Vieira, “The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo,” Molecular Biology Reports, vol. 40, no. 4, pp. 3269–3279, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. C. A. Meyer, G. Sathiyaraj, O. R. Lee et al., “Transcript profiling of antioxidant genes during biotic and abiotic stresses in Panax ginseng,” Molecular Biology Reports, vol. 38, no. 4, pp. 2761–2769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Asada, “Ascorbate peroxidase, a H2O2 scavenging enzyme in plants,” Physiologia Plantarum, vol. 85, pp. 235–241, 1992. View at Google Scholar
  23. D. Bhatt, S. C. Saxena, S. Jain, A. K. Dobriyal, M. Majee, and S. Arora, “Cloning, expression and functional validation of drought inducible ascorbate peroxidase (Ec-apx1) from Eleusine coracana,” Molecular Biology Reports, vol. 40, no. 2, pp. 1155–1165, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Liu, Z. Xiong, T. Li, and H. Huang, “Bioaccumulation and ecophysiological responses to copper stress in two populations of Rumex dentatus L. from Cu contaminated and non-contaminated sites,” Environmental and Experimental Botany, vol. 52, no. 1, pp. 43–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. R. G. Alscher, J. L. Donahue, and C. L. Cramer, “Reactive oxygen species and antioxidants: relationships in green cells,” Physiologia Plantarum, vol. 100, no. 2, pp. 224–233, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. J. A. Hernández, A. Jiménez, P. Mullineaux, and F. Sevilla, “Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences,” Plant, Cell and Environment, vol. 23, no. 8, pp. 853–862, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. M. L. Dionisio-Sese and S. Tobita, “Antioxidant responses of rice seedlings to salinity stress,” Plant Science, vol. 135, no. 1, pp. 1–9, 1998. View at Publisher · View at Google Scholar · View at Scopus