Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2014, Article ID 793721, 7 pages
http://dx.doi.org/10.1155/2014/793721
Research Article

Synthesis of New Blue Fluorescent Polymerizable 1,8-Naphthalimides and Their Copolymers with Styrene as Sensors for Fe(III) Cations

1Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1 Koziak Street, 1407 Sofia, Bulgaria
2Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
3Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Boucher Boulevard, 1164 Sofia, Bulgaria

Received 15 May 2013; Revised 30 September 2013; Accepted 17 October 2013; Published 5 January 2014

Academic Editor: Pasquale Longo

Copyright © 2014 Ivo Grabchev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Formica, V. Fusi, L. Giorgi, and M. Micheloni, “New fluorescent chemosensors for metal ions in solution,” Coordination Chemistry Reviews, vol. 256, no. 1-2, pp. 170–192, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Bojinov and N. Georgiev, “Molecular sensors and molecular logic gates,” Journal of the University of Chemical Technology and Metallurgy, vol. 46, no. 1, pp. 3–26, 2011. View at Google Scholar
  3. B. Adhikari and S. Majumdar, “Polymers in sensor applications,” Progress in Polymer Science, vol. 29, no. 7, pp. 699–766, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Grabchev, X. Qian, Y. Xiao, and R. Zhang, “Novel heterogeneous PET fluorescent sensors selective for transition metal ions or protons: polymers regularly labelled with naphthalimide,” New Journal of Chemistry, vol. 26, no. 7, pp. 920–925, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Grabchev, J.-M. Chovelon, and V. Bojinov, “New green fluorescent polyvinylcarbazole copolymer with 1,8-naphthalimide side chains as chemosensor for iron cations,” Polymers for Advanced Technologies, vol. 15, no. 7, pp. 382–386, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Sali, S. Guittonneau, and I. Grabchev, “A novel blue fluorescent chemosensor for metal cations and protons, based on 1,8-naphthalimide and its copolymer with styrene,” Polymers for Advanced Technologies, vol. 17, no. 3, pp. 180–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Grabchev, S. Sali, R. Betcheva, and V. Gregoriou, “New green fluorescent polymer sensors for metal cations and protons,” European Polymer Journal, vol. 43, no. 10, pp. 4297–4305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Alaei, S. Rouhani, K. Gharanjig, and J. Ghasemi, “A new polymerizable fluorescent PET chemosensor of fluoride (F) based on naphthalimide-thiourea dye,” Spectrochimica Acta A, vol. 90, pp. 85–92, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. V. B. Bojinov, N. I. Georgiev, and N. V. Marinova, “Design and synthesis of highly photostable fluorescence sensing 1,8-naphthalimide-based dyes containing s-triazine UV absorber and HALS units,” Sensors and Actuators B, vol. 148, no. 1, pp. 6–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. T. N. Konstantinova, P. Meallier, and I. Grabchev, “The synthesis of some 1,8-naphthalic anhydride derivatives as dyes for polymeric materials,” Dyes and Pigments, vol. 22, no. 3, pp. 191–198, 1993. View at Google Scholar · View at Scopus
  11. D. F. Eaton, “Reference materials for fluorescence measurement,” Pure and Applied Chemistry, vol. 60, no. 7, pp. 1107–1114, 1988. View at Publisher · View at Google Scholar
  12. B. Ramachandram, G. Saroja, N. B. Sankaran, and A. Samanta, “Unusually high fluorescence enhancement of some 1,8-naphthalimide derivatives induced by transition metal salts,” Journal of Physical Chemistry B, vol. 104, no. 49, pp. 11824–11832, 2000. View at Google Scholar · View at Scopus
  13. I. Grabchev, V. Bojinov, and R. Betcheva, “Spectrophotometric investigation of the copolymerization of styrene or methyl methacrylate with 1,8-naphthalimide dyes,” Journal of Applied Polymer Science, vol. 81, no. 10, pp. 2463–2470, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Grabchev, “Photophysical characteristics of polymerizable 1,8-naphthalimide dyes and their copolymers with styrene or methylmethacrylate,” Dyes and Pigments, vol. 38, no. 4, pp. 219–226, 1998. View at Google Scholar · View at Scopus
  15. I. Grabchev, I. Moneva, V. Bojinov, and S. Guittonneau, “Synthesis and properties of fluorescent 1,8-naphthalimide dyes for application in liquid crystal displays,” Journal of Materials Chemistry, vol. 10, no. 6, pp. 1291–1296, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Shaki, K. Gharanjig, S. Rouhani, and A. Khosravi, “Synthesis and photophysical properties of some novel fluorescent dyes based on naphthalimide derivatives,” Journal of Photochemistry and Photobiology A, vol. 216, no. 1, pp. 44–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Grabchev and T. Philipova, “Fluorescent polyacrylonitrile with 1,8-naphthalimide side chains,” Angewandte Makromolekulare Chemie, vol. 269, pp. 49–53, 1999. View at Google Scholar · View at Scopus