Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2015, Article ID 254631, 10 pages
http://dx.doi.org/10.1155/2015/254631
Research Article

Photocatalytic Activity in Phenol Removal of Water from Graphite and Graphene Oxides: Effect of Degassing and Chemical Oxidation in the Synthesis Process

1Centro Conjunto de Investigación en Química Sustentable, Universidad Autónoma del Estado de México and Universidad Nacional Autónoma de México, Km 12 de la Carretera Toluca-Atlacomulco, San Cayetano, 50200 Toluca, MEX, Mexico
2División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Querétaro, Avenida Tecnológico s/n Esquina con Mariano Escobedo, Colonia Centro Histórico, 76000 Querétaro, DF, Mexico
3Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, DF, Mexico

Received 14 October 2014; Revised 19 March 2015; Accepted 20 March 2015

Academic Editor: Nurettin Sahiner

Copyright © 2015 Karina Bustos-Ramirez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Seredych, R. Pietrzak, and T. J. Bandosz, “Role of graphite oxide (GO) and polyaniline (PANI) in NO2 reduction on GO-PANI composites,” Industrial and Engineering Chemistry Research, vol. 46, no. 21, pp. 6925–6935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chemical Society Reviews, vol. 39, no. 1, pp. 228–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Herrera, A. A. Abdala, J. M. McAllister, A. I. Aksay, and K. R. Prud'homme, “Intercalation and stitching of graphite oxide with diaminoalkanes,” Langmuir, vol. 23, pp. 10644–10649, 2007. View at Google Scholar
  4. B. Ö. Monkul, Graphite intercalation with fluoroanions by chemical and electrochemical methods [Ph.D. thesis], Oregon State University, Corvallis, Ore, USA, 2010.
  5. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, and R. Car, “Raman spectra of graphite oxide and functionalized graphene sheets,” Nano Letters, vol. 8, no. 1, pp. 36–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Nethravathi and M. Rajamathi, “Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide,” Carbon, vol. 46, no. 14, pp. 1994–1998, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, and I. Dékány, “Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids,” Langmuir, vol. 19, no. 15, pp. 6050–6055, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. C. Zangmeister, “Preparation and evaluation of graphite oxide reduced at 220°C,” Chemistry of Materials, vol. 22, no. 19, pp. 5625–5629, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, “Graphene-based polymer nanocomposites,” Polymer, vol. 52, no. 1, pp. 5–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Park and S. R. Ruoff, “Chemical methods for the production of graphenes,” Nature Nanotechnology, vol. 58, pp. 217–224, 2009. View at Publisher · View at Google Scholar
  11. H. Huawen, C. K. A. Chan, H. Hong et al., “Multifunctional organically modified graphene with super-hydrophobicity,” Nano Research, vol. 7, no. 3, pp. 418–433, 2014. View at Publisher · View at Google Scholar
  12. H. M. Maximilian, Graphite oxide and graphene oxide based electrode materials for electrochemical double layer capacitors [Ph.D. thesis], Technische Universität München, Munich, Germany, 2010.
  13. S. Stankovich, D. A. Dikin, R. D. Piner et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Park, J. An, R. D. Piner et al., “Aqueous suspension and characterization of chemically modified graphene sheets,” Chemistry of Materials, vol. 20, no. 21, pp. 6592–6594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” Journal of Materials Chemistry, vol. 16, no. 2, pp. 155–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. J. Cote, J. Kim, V. C. Tung, J. Luo, F. Kim, and J. Huang, “Graphene oxide as surfactant sheets,” Pure and Applied Chemistry, vol. 83, no. 1, pp. 95–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Gurunathan, J. W. Han, A. Abdal Dayem, V. Eppakayala, and J.-H. Kim, “Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa,” International Journal of Nanomedicine, vol. 7, pp. 5901–5914, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Ciesielski and P. Samorì, “Graphene via sonication assisted liquid-phase exfoliation,” Chemical Society Reviews, vol. 43, no. 1, pp. 381–398, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, and H. Teng, “Graphite oxide as a photocatalyst for hydrogen production from water,” Advanced Functional Materials, vol. 20, no. 14, pp. 2255–2262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T.-F. Yeh, F.-F. Chan, C.-T. Hsieh, and H. Teng, “Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide,” The Journal of Physical Chemistry C, vol. 115, no. 45, pp. 22587–22597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. T.-F. Yeh, J. Cihlář, C.-Y. Chang, C. Cheng, and H. Teng, “Roles of graphene oxide in photocatalytic water splitting,” Materials Today, vol. 16, no. 3, pp. 78–84, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Krishnamoorthy, R. Mohan, and S.-J. Kim, “Graphene oxide as a photocatalytic material,” Applied Physics Letters, vol. 98, no. 24, Article ID 244101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Shi, R. Su, S. Zhu, M. Zhu, D. Li, and S. Xu, “Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water,” Journal of Hazardous Materials, vol. 229-230, pp. 331–339, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Jiang, Z. Tao, M. Ji, Q. Zhao, X. Fu, and H. Yin, “Preparation and photocatalytic property of TiO2-graphite oxide intercalated composite,” Catalysis Communications, vol. 28, pp. 47–51, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Vadivel, M. Vanitha, A. Muthukrishnaraj, and N. Balasubramanian, “Graphene oxide-BiOBr composite material as highly efficient photocatalyst for degradation of methylene blue and rhodamine-B dyes,” Journal of Water Process Engineering, vol. 1, pp. 17–26, 2014. View at Publisher · View at Google Scholar
  26. G. Hu and B. Tang, “Photocatalytic mechanism of graphene/titanate nanotubes photocatalyst under visible-light irradiation,” Materials Chemistry and Physics, vol. 138, no. 2-3, pp. 608–614, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Shen, N. Li, and M. Ye, “Supramolecular photocatalyst of RGO-cyclodextrin-TiO2,” Journal of Alloys and Compounds, vol. 580, pp. 239–244, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Guardia, S. Villar-Rodil, J. I. Paredes, R. Rozada, A. Martínez-Alonso, and J. M. D. Tascón, “UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene-metal nanoparticle hybrids and dye degradation,” Carbon, vol. 50, no. 3, pp. 1014–1024, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Hayat, M. A. Gondal, M. M. Khaled, S. Ahmed, and A. M. Shemsi, “Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water,” Applied Catalysis A: General, vol. 393, no. 1-2, pp. 122–129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Valente, F. Tzompantzi, and J. Prince, “Highly efficient photocatalytic elimination of phenol and chlorinated phenols by CeO2/MgAl layered double hydroxides,” Applied Catalysis B: Environmental, vol. 102, no. 1-2, pp. 276–285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Wang, J. Wang, X. Wang et al., “One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity,” Applied Catalysis B: Environmental, vol. 132-133, pp. 452–459, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. D. W. Lee and J. W. Seo, “Sp2/sp3 carbon ratio in graphite oxide with different preparation times,” The Journal of Physical Chemistry C, vol. 115, no. 6, pp. 2705–2708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Krishnamoorthy, M. Veerapandian, K. Yun, and S.-J. Kim, “The chemical and structural analysis of graphene oxide with different degrees of oxidation,” Carbon, vol. 53, pp. 38–49, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Rattana, S. Chaiyakun, and P. Limsuwan, “Preparation and characterization of graphene oxide nanosheets,” Procedia Engineering, vol. 32, pp. 759–764, 2012. View at Google Scholar
  35. G. I. Eskin, “Cavitation mechanism of ultrasonic melt degassing,” Ultrasonics Sonochemistry, vol. 2, no. 2, pp. S137–S141, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. A. R. Jambrak, T. J. Mason, V. Lelas, Z. Herceg, and I. L. Herceg, “Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions,” Journal of Food Engineering, vol. 86, no. 2, pp. 281–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Bustos-Ramírez, A. L. Martínez-Hernández, G. Martínez-Barrera, M. de Icaza, V. M. Castaño, and C. Velasco-Santos, “Covalently bonded chitosan on graphene oxide via redox reaction,” Materials, vol. 6, no. 3, pp. 911–926, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Jhon, “Interpretation of infrared spectra, a practical approach,” in Encyclopedia of Analytical Chemistry, R. A. Meyer, Ed., pp. 10815–10837, John Wiley & Sons Ltd, Chichester, UK, 2000. View at Google Scholar
  39. J. I. Parades, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir, vol. 24, no. 19, pp. 10560–10564, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. C. N. R. Rao, K. Biswas, K. S. Subrahmanyam, and A. Govindaraj, “Graphene, the new nanocarbon,” Journal of Materials Chemistry, vol. 19, no. 17, pp. 2457–2469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. D. W. Lee and J. W. Seo, “Sp2/sp3 carbon ratio in graphite oxide with different preparation times,” Journal of Physical Chemistry C, vol. 115, no. 6, pp. 2705–2708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Xu and L. Cheng, “Graphite oxide under high pressure: a Raman spectroscopic study,” Journal of Nanomaterials, vol. 2013, Article ID 731875, 5 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. I. Childres, L. A. Jaureguib, W. Parkb, H. Caoa, and Y. P. Chena, “Raman spectroscopy of graphene and related materials,” in New Developments in Photon and Materials Research, J. I. Jang, Ed., pp. 1–20, Nova Science Publishers, Binghamton, NY, USA, 2013. View at Google Scholar
  44. K. Akin, I. Arslan-Alaton, O.-H. Tugba, and M. Bekbolet, “Degradation and detoxification of industrially important phenol derivatives in water by direct UV-C photolysis and H2O2/UV-C process: a comparative study,” Chemical Engineering Journal, vol. 224, no. 1, pp. 4–9, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown, and M. A. Hashib, “Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments,” Desalination, vol. 261, no. 1-2, pp. 3–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. T.-D. Nguyen-Phan, V. H. Pham, E. W. Shin et al., “The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites,” Chemical Engineering Journal, vol. 170, no. 1, pp. 226–232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Hea, S. Caoa, D. Guoa et al., “3D BiOI-GO composite with enhanced photocatalytic performance for phenol degradation under visible-light,” Ceramics International, vol. 41, no. 3, part A, pp. 3511–3517, 2015. View at Publisher · View at Google Scholar
  48. R. Hua, S. Daib, D. Shao, A. Alsaedi, B. Ahmad, and X. Wang, “Efficient removal of phenol and aniline from aqueous solutions using graphene oxide/polypyrrole composites,” Journal of Molecular Liquids, vol. 203, pp. 80–89, 2015. View at Publisher · View at Google Scholar
  49. J. S. Valente, F. Tzompantzi, J. Prince, J. G. H. Cortez, and R. Gomez, “Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by Mg–Zn–Al layered double hydroxides,” Applied Catalysis B: Environmental, vol. 90, no. 3-4, pp. 330–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. E. M. Seftel, M. C. Puscasu, M. Mertens, P. Cool, and G. Carja, “Assemblies of nanoparticles of CeO2-ZnTi-LDHs and their derived mixed oxides as novel photocatalytic systems for phenol degradation,” Applied Catalysis B: Environmental, vol. 150-151, pp. 157–166, 2014. View at Publisher · View at Google Scholar · View at Scopus