Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2015 (2015), Article ID 347532, 8 pages
http://dx.doi.org/10.1155/2015/347532
Research Article

Extraction Techniques for Bioactive Compounds and Antioxidant Capacity Determination of Chilean Papaya (Vasconcellea pubescens) Fruit

1Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avenida Raúl Bitrán No. 1305, Casilla 599, 1720010 La Serena, Chile
2Departamento de Química, Universidad de La Serena, Avenida Raúl Bitrán No. 1305, Casilla 599, 1720010 La Serena, Chile

Received 1 December 2014; Revised 20 April 2015; Accepted 22 April 2015

Academic Editor: Volker Böhm

Copyright © 2015 Elsa Uribe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Y. Lim, T. T. Lim, and J. J. Tee, “Antioxidant properties of several tropical fruits: a comparative study,” Food Chemistry, vol. 103, no. 3, pp. 1003–1008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Ignat, I. Volf, and V. I. Popa, “A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables,” Food Chemistry, vol. 126, no. 4, pp. 1821–1835, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Garcia-Salas, A. Morales-Soto, A. Segura-Carretero, and A. Fernández-Gutiérrez, “Phenolic-compound-extraction systems for fruit and vegetable samples,” Molecules, vol. 15, no. 12, pp. 8813–8826, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Morales-Quintana, L. Fuentes, C. Gaete-Eastman, R. Herrera, and M. A. Moya-León, “Structural characterization and substrate specificity of VpAAT1 protein related to ester biosynthesis in mountain papaya fruit,” Journal of Molecular Graphics and Modelling, vol. 29, no. 5, pp. 635–642, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. B. Waghmare and U. S. Annapure, “Combined effect of chemical treatment and/or modified atmosphere packaging (MAP) on quality of fresh-cut papaya,” Postharvest Biology and Technology, vol. 85, pp. 147–153, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Azmir, I. S. M. Zaidul, M. M. Rahman et al., “Techniques for extraction of bioactive compounds from plant materials: a review,” Journal of Food Engineering, vol. 117, no. 4, pp. 426–436, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Corrales, S. Toepfl, P. Butz, D. Knorr, and B. Tauscher, “Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison,” Innovative Food Science and Emerging Technologies, vol. 9, no. 1, pp. 85–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Da Porto, E. Porretto, and D. Decorti, “Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds,” Ultrasonics Sonochemistry, vol. 20, no. 4, pp. 1076–1080, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Yang, Y. Jiang, J. Shi, F. Chen, and M. Ashraf, “Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan Lour.) fruit—a review,” Food Research International, vol. 44, no. 7, pp. 1837–1842, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. F. Barrera Vázquez, L. R. Comini, R. E. Martini, S. C. Núñez Montoya, S. Bottini, and J. L. Cabrera, “Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae),” Ultrasonics Sonochemistry, vol. 21, no. 2, pp. 478–484, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Gao and C. Z. Liu, “Comparison of techniques for the extraction of flavonoids from cultured cells of Saussurea medusa Maxim,” World Journal of Microbiology and Biotechnology, vol. 21, no. 8-9, pp. 1461–1463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. P. C. Wootton-Beard, A. Moran, and L. Ryan, “Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods,” Food Research International, vol. 44, no. 1, pp. 217–224, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Goiris, P. De Vreese, L. De Cooman, and K. Muylaert, “Rapid screening and guided extraction of antioxidants from microalgae using voltammetric methods,” Journal of Agricultural and Food Chemistry, vol. 60, no. 30, pp. 7359–7366, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. AOAC, Official Method of Analysis, Association of Official Analytical Chemists, Washington, DC, USA, 15th edition, 1990.
  15. A. Altemimi, R. Choudhary, D. G. Watson, and D. A. Lightfoot, “Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts,” Ultrasonics Sonochemistry, vol. 24, pp. 247–255, 2015. View at Publisher · View at Google Scholar
  16. S.-S. Teh and E. J. Birch, “Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes,” Ultrasonics Sonochemistry, vol. 21, no. 1, pp. 346–353, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” LWT—Food Science and Technology, vol. 28, no. 1, pp. 25–30, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. I. F. F. Benzie and J. J. Strain, “The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay,” Analytical Biochemistry, vol. 239, no. 1, pp. 70–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Que, L. Mao, X. Fang, and T. Wu, “Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours,” International Journal of Food Science and Technology, vol. 43, no. 7, pp. 1195–1201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. G. E. Nwofia, P. Ojimelukwe, and C. Eji, “Chemical composition of leaves, fruit pulp andseeds in some Carica papaya (L) morphotypes,” International Journal of Medicinal and Aromatic Plants, vol. 2, no. 1, pp. 200–206, 2012. View at Google Scholar
  21. H. H. Wijngaard, C. Rößle, and N. Brunton, “A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants,” Food Chemistry, vol. 116, no. 1, pp. 202–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Gironés-Vilaplana, N. Baenas, D. Villaño, H. Speisky, C. García-Viguera, and D. A. Moreno, “Evaluation of Latin-American fruits rich in phytochemicals with biological effects,” Journal of Functional Foods, vol. 7, no. 1, pp. 599–608, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Sochor, O. Zitka, H. Skutkova et al., “Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes,” Molecules, vol. 15, no. 9, pp. 6285–6305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Varela-Santos, A. Ochoa-Martínez, G. Tabilo-Munizaga et al., “Effect of high hydrostatic pressure (HHP) processing on physicochemical properties, bioactive compounds and shelf-life of pomegranate juice,” Innovative Food Science & Emerging Technologies, vol. 13, pp. 13–32, 2012. View at Publisher · View at Google Scholar
  25. M. Corrales, A. F. García, P. Butz, and B. Tauscher, “Review: extraction of anthocyanins from grape skins assisted by high hydrostatic pressure,” Journal of Food Engineering, vol. 90, no. 4, pp. 415–421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Ghafoor and Y. H. Choi, “Optimization of ultrasound assisted extraction of phenolic compounds and antioxidants from grape peel through response surface methodology,” Journal of the Korean Society for Applied Biological Chemistry, vol. 52, no. 3, pp. 295–300, 2009. View at Publisher · View at Google Scholar
  27. L. E. Gayosso-García Sancho, E. M. Yahia, and G. A. González-Aguilar, “Identification and quantification of phenols, carotenoids, and vitamin C from papaya (Carica papaya L., cv. Maradol) fruit determined by HPLC-DAD-MS/MS-ESI,” Food Research International, vol. 44, no. 5, pp. 1284–1291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. D. M. Rivera-Pastrana, E. M. Yahia, and G. A. González-Aguilar, “Phenolic and carotenoid profiles of papaya fruit (Carica papaya L.) and their contents under low temperature storage,” Journal of the Science of Food and Agriculture, vol. 90, no. 14, pp. 2358–2365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. L. S. Chua, “A review on plant-based rutin extraction methods and its pharmacological activities,” Journal of Ethnopharmacology, vol. 150, no. 3, pp. 805–817, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Briones-Labarca, C. Giovagnoli-Vicuña, P. Figueroa-Alvarez, I. Quispe-Fuentes, and M. Pérez-Won, “Extraction of β-carotene, vitamin C and antioxidant compounds from Physalis peruviana (cape gooseberry) assisted by high hydrostatic pressure,” Food and Nutrition Sciences, vol. 4, no. 8, pp. 109–118, 2013. View at Publisher · View at Google Scholar
  31. Y. Hernández, M. G. Lobo, and M. González, “Determination of vitamin C in tropical fruits: a comparative evaluation of methods,” Food Chemistry, vol. 96, no. 4, pp. 654–664, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. K. M. Phillips, M. T. Tarragó-Trani, S. E. Gebhardt et al., “Stability of vitamin C in frozen raw fruit and vegetable homogenates,” Journal of Food Composition and Analysis, vol. 23, no. 3, pp. 253–259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. L. M. de Souza, K. S. Ferreira, J. B. P. Chaves, and S. L. Teixeira, “L-ascorbic acid, β-carotene and lycopene content in papaya fruits (Carica papaya) with or without physiological skin freckles,” Scientia Agricola, vol. 65, no. 3, pp. 246–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. O. C. Othman, “Physical and chemical composition of storage-ripened papaya (Carica papaya L.) fruits of Eastern Tanzania,” Tanzania Journal of Science, vol. 35, pp. 47–56, 2009. View at Google Scholar
  35. Y. Nuñez-Mancilla, M. Pérez-Won, E. Uribe, A. Vega-Gálvez, and K. Di Scala, “Osmotic dehydration under high hydrostatic pressure: effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca),” LWT—Food Science and Technology, vol. 52, no. 2, pp. 151–156, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Chevion, M. A. Roberts, and M. Chevion, “The use of cyclic voltammetry for the evaluation of antioxidant capacity,” Free Radical Biology and Medicine, vol. 28, no. 6, pp. 860–870, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. L. M. Botero, S. C. Ricaurtee, C. E. Monsalve, and B. Rojano, “Capacidad reductora de 15 frutas tropicales,” Scientia et Technica, vol. 13, no. 1, pp. 295–296, 2007. View at Google Scholar