Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2015, Article ID 516878, 7 pages
http://dx.doi.org/10.1155/2015/516878
Research Article

In Vitro Enzyme Inhibition Potentials and Antioxidant Activity of Synthetic Flavone Derivatives

1Department of Pharmacy, University of Malakand, Chakdara, Dir Lower, Khyber Pakhtunkhwa 18550, Pakistan
2Department of Pharmacology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
3Department of Chemistry, University of Malakand, Chakdara, Dir Lower, Khyber Pakhtunkhwa 18550, Pakistan
4Department of Physics, University of Sargodha, Punjab 40100, Pakistan
5Department of Statistics, University of Malakand, Chakdara, Dir Lower, Khyber Pakhtunkhwa 18550, Pakistan

Received 8 March 2015; Accepted 23 April 2015

Academic Editor: Dimitris P. Makris

Copyright © 2015 Mohammad Shoaib et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Iqbal, U. Younas, K. W. Chan, M. Zia-Ul-Haq, and M. Ismail, “Chemical composition of Artemisia annua L. leaves and antioxidant potential of extracts as a function of extraction solvents,” Molecules, vol. 17, no. 5, pp. 6020–6032, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Christen, “Oxidative stress and Alzheimer disease,” The American Journal of Clinical Nutrition, vol. 71, no. 2, pp. 621–629, 2000. View at Google Scholar · View at Scopus
  3. A. Nunomura, R. J. Castellani, X. Zhu, P. I. Moreira, G. Perry, and M. A. Smith, “Involvement of oxidative stress in Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 65, no. 7, pp. 631–641, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Wood-Kaczmar, S. Gandhi, and N. W. Wood, “Understanding the molecular causes of Parkinson's disease,” Trends in Molecular Medicine, vol. 12, no. 11, pp. 521–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Davì, A. Falco, and C. Patrono, “Lipid peroxidation in diabetes mellitus,” Antioxidants and Redox Signaling, vol. 7, no. 1-2, pp. 256–268, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Giugliano, A. Ceriello, and G. Paolisso, “Oxidative stress and diabetic vascular complications,” Diabetes Care, vol. 19, no. 3, pp. 257–267, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. C. A. Hitchon and H. S. El-Gabalawy, “Oxidation in rheumatoid arthritis,” Arthritis Research and Therapy, vol. 6, no. 6, pp. 265–278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. R. Cookson and P. J. Shaw, “Oxidative stress and motor neurone disease,” Brain Pathology, vol. 9, no. 1, pp. 165–186, 1999. View at Google Scholar · View at Scopus
  9. H. Sies, “Oxidative stress: oxidants and antioxidants,” Experimental Physiology, vol. 82, no. 2, pp. 291–295, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. K. J. Davies, “Oxidative stress: the paradox of aerobic life,” Biochemical Society Symposium, vol. 61, no. 2, pp. 1–31, 1995. View at Google Scholar · View at Scopus
  11. S. G. Rhee, “Cell signaling. H2O2, a necessary evil for cell signaling,” Science, vol. 312, no. 5782, pp. 1882–1883, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. G. Mohan, M. Deepak, G. L. Viswanatha et al., “Anti-oxidant and anti-inflammatory activity of leaf extracts and fractions of Mangifera indica,” Asian Pacific Journal of Tropical Medicine, vol. 6, no. 4, pp. 311–314, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. C. R. Kim, S. J. Choi, S. S. Oh et al., “Rubus coreanus Miquel inhibits acetylcholinesterase activity and prevents cognitive impairment in a mouse model of dementia,” Journal of Medicinal Food, vol. 16, no. 9, pp. 785–792, 2013. View at Publisher · View at Google Scholar
  14. A. Braca, C. Sortino, M. Politi, I. Morelli, and J. Mendez, “Antioxidant activity of flavonoids from Licania licaniaeflora,” Journal of Ethnopharmacology, vol. 79, no. 3, pp. 379–381, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Ozawa, “Genetic and functional changes in mitochondria associated with aging,” Physiological Reviews, vol. 77, no. 2, pp. 425–464, 1997. View at Google Scholar · View at Scopus
  16. S. Ray, “A theoretical study of 1, 1-diphenyl-2-picrylhydrazyl (dpph) radical scavenging activities of flavonoids using electrotopological state atom (e-state) parameters,” International Journal of Pharma and BioSciences, vol. 3, no. 3, pp. P543–P550, 2012. View at Google Scholar · View at Scopus
  17. V. H. E. Susanti, S. Matsjeh, T. D. Mustofa Wahyuningsih, and T. Redjeki, “Synthesis, characterization and antioxidant activity of 7-hydroxy-3′,4′-dimethoxyflavone,” Indonesian Journal of Chemistry, vol. 12, no. 2, pp. 146–151, 2012. View at Google Scholar
  18. D. Kim, K. Ham, and S. Hong, “Synthetic approach to flavanones and flavones via ligand-free palladium(II)-catalyzed conjugate addition of arylboronic acids to chromones,” Organic and Biomolecular Chemistry, vol. 10, no. 36, pp. 7305–7312, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Zhao, Y. Zhao, and H. Fu, “Transition-metal-free intramolecular Ullmann-type O-arylation: synthesis of chromone derivatives,” Angewandte Chemie International Edition, vol. 50, no. 16, pp. 3769–3773, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. R. A. Khan, M. R. Khan, S. Sahreen, and M. Ahmed, “Evaluation of phenolic contents and antioxidant activity of various solvent extracts of Sonchus asper (L.) Hill,” Chemistry Central Journal, vol. 6, article 12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Sekhar, K. K. Sampath-Kumara, S. R. Niranjana, and H. S. Prakash, “In vitro antioxidant activity, lipoxygenase, cyclooxygenase-2 inhibition and dna protection properties of Memecylon species,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 2, pp. 257–262, 2013. View at Google Scholar · View at Scopus
  22. M. Shoaib, I. Shah, N. Ali, and S. W. A. Shah, “In vitro acetylcholinesterase and butyrylcholinesterase inhibitory potentials of essential oil of Artemisia macrocephala,” Bangladesh Journal of Pharmacology, vol. 10, no. 1, pp. 87–91, 2015. View at Publisher · View at Google Scholar
  23. A. K. Tiwari, “Antioxidants: new-generation therapeutic base for treatment of polygenic disorders,” Current Science, vol. 86, no. 8, pp. 1092–1102, 2004. View at Google Scholar · View at Scopus
  24. S. Velavan, “Free radicals in health and diseases,” Pharmacologyonline, vol. 1, no. 1, pp. 1062–1077, 2011. View at Google Scholar
  25. W. Lopaczynski and S. H. Zeisel, “Antioxidants, programmed cell death, and cancer,” Nutrition Research, vol. 21, no. 1-2, pp. 295–307, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Glade, “The role of reactive oxygen species in health and disease Northeast Regional Environmental Public Health Center University of Massachusetts, Amherst,” Nutrition, vol. 19, no. 4, pp. 401–403, 2003. View at Google Scholar
  27. G. Poli, G. Leonarduzzi, F. Biasi, and E. Chiarpotto, “Oxidative stress and cell signalling,” Current Medicinal Chemistry, vol. 11, no. 9, pp. 1163–1182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Halliwell, “Uric acid: an example of antioxidant evaluation,” in Handbook of Antioxidants, E. Cadenas and L. Packer, Eds., Marcel Dekker, New York, NY, USA, 1996. View at Google Scholar
  29. G. Cioffi, M. D'Auria, A. Braca et al., “Antioxidant and free-radical scavenging activity of constituents of the leaves of Tachigalia paniculata,” Journal of Natural Products, vol. 65, no. 11, pp. 1526–1529, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Shahidi, “Antioxidants in food and food antioxidants,” Die Nahrung, vol. 44, no. 3, pp. 158–163, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. N. C. Cook and S. Samman, “Flavonoids: chemistry, metabolism, cardioprotective effects, and dietary sources,” The Journal of Nutritional Biochemistry, vol. 7, no. 2, pp. 66–76, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Philip, “The use of the stable free radical diphenylpicrylhydrazy (DPPH) for estimating antioxidant activity,” Songklanakarin Journal of Science and Technology, vol. 26, no. 2, pp. 211–219, 2003. View at Google Scholar
  33. W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” LWT—Food Science and Technology, vol. 28, no. 1, pp. 25–30, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Dudonné, X. Vitrac, P. Coutiére, M. Woillez, and J.-M. Mérillon, “Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays,” Journal of Agricultural and Food Chemistry, vol. 57, no. 5, pp. 1768–1774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J.-K. Moon and T. Shibamoto, “Antioxidant assays for plant and food components,” Journal of Agricultural and Food Chemistry, vol. 57, no. 5, pp. 1655–1666, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. P. X. Nunes, S. F. Silva, R. J. Guedes, and S. Almeida, “Biological oxidations and antioxidant activity of natural products,” in Phytochemicals as Nutraceuticals—Global Approaches to Their Role in Nutrition and Health, chapter 1, InTech, Rijeka, Croatia, 2012. View at Publisher · View at Google Scholar
  37. D. Krishnaiah, R. Sarbatly, and R. Nithyanandam, “A review of the antioxidant potential of medicinal plant species,” Food and Bioproducts Processing, vol. 89, no. 3, pp. 217–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Gülçin, D. Berashvili, and A. Gepdiremen, “Antiradical and antioxidant activity of total anthocyanins from Perilla pankinensis decne,” Journal of Ethnopharmacology, vol. 101, no. 1–3, pp. 287–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Sumaira, R. K. Muhammad, and A. K. Rahmat, “Phenolic compounds and antioxidant activities of Rumex hastatus D. Don. leaves,” Journal of Medicinal Plants Research, vol. 5, no. 13, pp. 2755–2765, 2011. View at Google Scholar
  40. L. Rackova, M. Oblozinsky, D. Kostalova, V. Kettmann, and L. Bezakova, “Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids,” Journal of Inflammation, vol. 4, article no. 15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Trouillas, C.-A. Calliste, D.-P. Allais et al., “Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas,” Food Chemistry, vol. 80, no. 3, pp. 399–407, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. M. F. Mahomoodally, A. Gurib-Fakim, and A. H. Subratty, “Antimicrobial activities and phytochemical profiles of endemic medicinal plants of Mauritius,” Pharmaceutical Biology, vol. 43, no. 3, pp. 237–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Kanadaswami, L.-T. Lee, P.-P. H. Lee et al., “The antitumor activities of flavonoids,” In Vivo, vol. 19, no. 5, pp. 895–910, 2005. View at Google Scholar · View at Scopus
  44. J. J. Van Zanden, L. Geraets, H. M. Wortelboer, P. J. Van Bladeren, I. M. C. M. Rietjens, and N. H. P. Cnubben, “Structural requirements for the flavonoid-mediated modulation of glutathione S-transferase P1-1 and GS-X pump activity in MCF7 breast cancer cells,” Biochemical Pharmacology, vol. 67, no. 8, pp. 1607–1617, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. F. A.-F. Ragab, N. A. M. El-Sayed, A. A. H. M. Eissa, and A. M. El Kerdawy, “Synthesis and anticonvulsant activity of certain substituted furochromone, benzofuran and flavone derivatives,” Chemical and Pharmaceutical Bulletin, vol. 58, no. 9, pp. 1148–1156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Ajay, A.-U. H. Gilani, and M. R. Mustafa, “Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta,” Life Sciences, vol. 74, no. 5, pp. 603–612, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Higgs, C. Wasowski, L. M. Loscalzo, and M. Marder, “In vitro binding affinities of a series of flavonoids for m-opioid receptors. Antinociceptive effect of the synthetic flavonoid 3,3-dibromoflavanone in mice,” Neuropharmacology, vol. 72, pp. 9–19, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. J. E. N. Dolatabadi, A. Mokhtarzadeh, S. M. Ghareghoran, and G. Dehghan, “Synthesis, characterization and antioxidant property of Quercetin-Tb(III) complex,” Advanced Pharmaceutical Bulletin, vol. 4, no. 2, pp. 101–104, 2014. View at Publisher · View at Google Scholar · View at Scopus
  49. T. T. Dao, Y. S. Chi, J. Kim, H. P. Kim, S. Kim, and H. Park, “Synthesis and inhibitory activity against COX-2 catalyzed prostaglandin production of chrysin derivatives,” Bioorganic and Medicinal Chemistry Letters, vol. 14, no. 5, pp. 1165–1167, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Ognibene, P. Bovicelli, W. Adriani, L. Saso, and G. Laviola, “Behavioral effects of 6-bromoflavanone and 5-methoxy-6,8-dibromoflavanone as anxiolytic compounds,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 1, pp. 128–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Viola, M. Marder, C. Wolfman, C. Wasowski, J. H. Medina, and A. C. Paladini, “6-Bromo-3′-nitroflavone, a new high affinity benzodiazepine receptor agonist recognizes two populations of cerebral cortical binding sites,” Bioorganic & Medicinal Chemistry Letters, vol. 7, no. 3, pp. 373–378, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. M. G. L. Hertog, D. Kromhout, C. Aravanis et al., “Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study,” Archives of Internal Medicine, vol. 155, no. 4, pp. 381–386, 1995. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Cai, Q. Luo, M. Sun, and H. Corke, “Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer,” Life Sciences, vol. 74, no. 17, pp. 2157–2184, 2004. View at Publisher · View at Google Scholar · View at Scopus