Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2015, Article ID 963034, 7 pages
http://dx.doi.org/10.1155/2015/963034
Research Article

Mechanical Stress Results in Immediate Accumulation of Glucosinolates in Fresh-Cut Cabbage

Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia

Received 19 May 2015; Revised 3 August 2015; Accepted 5 August 2015

Academic Editor: Mehmet Özturk

Copyright © 2015 Tomaž Požrl et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Rico, A. B. Martín-Diana, J. M. Barat, and C. Barry-Ryan, “Extending and measuring the quality of fresh-cut fruit and vegetables: a review,” Trends in Food Science & Technology, vol. 18, no. 7, pp. 373–386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Nassivera and S. Sillani, “Consumer perceptions and motivations in choice of minimally processed vegetables: a case study in Italy,” British Food Journal, vol. 117, no. 3, pp. 970–986, 2015. View at Publisher · View at Google Scholar
  3. M. E. Guerzoni, A. Gianotti, M. R. Corbo, and M. Sinigaglia, “Shelf-life modelling for fresh-cut vegetables,” Postharvest Biology and Technology, vol. 9, no. 2, pp. 195–207, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Cliffe-Byrnes and D. O'Beirne, “The effects of cultivar and physiological age on quality and shelf-life of coleslaw mix packaged in modified atmospheres,” International Journal of Food Science & Technology, vol. 40, no. 2, pp. 165–175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Pasha, F. Saeed, M. T. Sultan, M. R. Khan, and M. Rohi, “Recent developments in minimal processing: a tool to retain nutritional quality of food,” Critical Reviews in Food Science and Nutrition, vol. 54, no. 3, pp. 340–351, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. L. F. Reyes, J. E. Villarreal, and L. Cisneros-Zevallos, “The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue,” Food Chemistry, vol. 101, no. 3, pp. 1254–1262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. M. Bones and J. T. Rossiter, “The enzymic and chemically induced decomposition of glucosinolates,” Phytochemistry, vol. 67, no. 11, pp. 1053–1067, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Ishida, M. Hara, N. Fukino, T. Kakizaki, and Y. Morimitsu, “Glucosinolate metabolism, functionality and breeding for the improvement of brassicaceae vegetables,” Breeding Science, vol. 64, no. 1, pp. 48–59, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. K. F. M.-J. Tierens, B. P. H. J. Thomma, M. Brouwer et al., “Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens,” Plant Physiology, vol. 125, no. 4, pp. 1688–1699, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. D. J. Kliebenstein, J. Kroymann, and T. Mitchell-Olds, “The glucosinolate-myrosinase system in an ecological and evolutionary context,” Current Opinion in Plant Biology, vol. 8, no. 3, pp. 264–271, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. W. Griffiths, A. N. E. Birch, and J. R. Hillman, “Antinutritional compounds in the Brassicaceae. Analysis, biosynthesis, chemistry and dietary effects,” Journal of Horticultural Science and Biotechnology, vol. 73, no. 1, pp. 1–18, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A. Thomson and T. L. Green, “Cruciferous vegetables and cancer prevention,” in Functional Foods and Nutraceuticals in Cancer Prevention, R. R. Watson, Ed., pp. 263–286, Iowa State Press, Ames, Iowa, USA, 2003. View at Google Scholar
  13. D. A. Moreno, M. Carvajal, C. López-Berenguer, and C. García-Viguera, “Chemical and biological characterisation of nutraceutical compounds of broccoli,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, no. 5, pp. 1508–1522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Devi and E. B. Thangam, “Mechanisms of anticancer activity of sulforaphane from Brassica oleracea in HEp-2 human epithelial carcinoma cell line,” Asian Pacific Journal of Cancer Prevention, vol. 13, no. 5, pp. 2095–2100, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Mewis, H. M. Appel, A. Hom, R. Raina, and J. C. Schultz, “Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects,” Plant Physiology, vol. 138, no. 2, pp. 1149–1162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Verkerk, M. Dekker, and W. M. F. Jongen, “Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables,” Journal of the Science of Food and Agriculture, vol. 81, no. 9, pp. 953–958, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Wennberg, J. Ekvall, K. Olsson, and M. Nyman, “Changes in carbohydrate and glucosinolate composition in white cabbage (Brassica oleracea var. capitata) during blanching and treatment with acetic acid,” Food Chemistry, vol. 95, no. 2, pp. 226–236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Rungapamestry, A. J. Duncan, Z. Fuller, and B. Ratcliffe, “Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations,” Journal of Agricultural and Food Chemistry, vol. 54, no. 20, pp. 7628–7634, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. M. Kushad, A. F. Brown, A. C. Kurilich et al., “Variation of glucosinolates in vegetable crops of Brassica oleracea,” Journal of Agricultural and Food Chemistry, vol. 47, no. 4, pp. 1541–1548, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Nilsson, K. Olsson, G. Engqvist et al., “Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohydrates in Brassica vegetables,” Journal of the Science of Food and Agriculture, vol. 86, no. 4, pp. 528–538, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Kusznierewicz, A. Bartoszek, L. Wolska, J. Drzewiecki, S. Gorinstein, and J. Namieśnik, “Partial characterization of white cabbages (Brassica oleracea var. capitata f. alba) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins,” LWT—Food Science and Technology, vol. 41, no. 1, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Volden, T. Wicklund, R. Verkerk, and M. Dekker, “Kinetics of changes in glucosinolate concentrations during long-term cooking of white cabbage (Brassica oleracea L. ssp. capitata f. alba),” Journal of Agricultural and Food Chemistry, vol. 56, no. 6, pp. 2068–2073, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Martinez-Villaluenga, E. Peñas, J. Frias et al., “Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons,” Journal of Food Science, vol. 74, no. 1, pp. C62–C67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Peñas, J. Frias, C. Martínez-Villaluenga, and C. Vidal-Valverde, “Bioactive compounds, myrosinase activity, and antioxidant capacity of white cabbages grown in different locations of Spain,” Journal of Agricultural and Food Chemistry, vol. 59, no. 8, pp. 3772–3779, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Bohinc, M. Devetak, and S. Trdan, “Quantity of glucosinolates in 10 cabbage genotypes and their impact on the feeding of Mamestra brassicae caterpillars,” Archives of Biological Sciences, vol. 66, no. 2, pp. 867–876, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Kissen, J. T. Rossiter, and A. M. Bones, “The ‘mustard oil bomb’: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system,” Phytochemistry Reviews, vol. 8, no. 1, pp. 69–86, 2009. View at Publisher · View at Google Scholar
  27. R. Verkerk, M. S. Van Der Gaag, M. Dekker, and W. M. F. Jongen, “Effects of processing conditions on glucosinolates in cruciferous vegetables,” Cancer Letters, vol. 114, no. 1-2, pp. 193–194, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Song and P. J. Thornalley, “Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables,” Food and Chemical Toxicology, vol. 45, no. 2, pp. 216–224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. I. E. Sønderby, F. Geu-Flores, and B. A. Halkier, “Biosynthesis of glucosinolates—gene discovery and beyond,” Trends in Plant Science, vol. 15, no. 5, pp. 283–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. D. Mikkelsen, B. L. Petersen, C. E. Olsen, and B. A. Halkier, “Biosynthesis and metabolic engineering of glucosinolates,” Amino Acids, vol. 22, no. 3, pp. 279–295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Orozco-Cardenas and C. A. Ryan, “Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 11, pp. 6553–6557, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Ludwig-Muller and W. Hilgenberg, “A plasma membrane-bound enzyme oxidizes L-tryptophan to indole-3-acetaldoxime,” Physiologia Plantarum, vol. 74, no. 2, pp. 240–250, 1988. View at Publisher · View at Google Scholar
  33. E. Rosa and M. Helena Gomes, “Relationship between free amino acids and glucosinolates in primary and secondary inflorescences of 11 broccoli (Brassica oleracea L var italica) cultivars grown in early and late seasons,” Journal of the Science of Food and Agriculture, vol. 82, no. 1, pp. 61–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. A. P. Oliveira, D. M. Pereira, P. B. Andrade et al., “Free amino acids of tronchuda cabbage (Brassica oleracea L. Var. costata DC): influence of leaf position (internal or external) and collection time,” Journal of Agricultural and Food Chemistry, vol. 56, no. 13, pp. 5216–5221, 2008. View at Publisher · View at Google Scholar · View at Scopus