Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2016 (2016), Article ID 7296858, 13 pages
http://dx.doi.org/10.1155/2016/7296858
Research Article

Removal of Fluoride from Aqueous Solutions Using Chitosan Cryogels

1Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Avenida Tecnológico S/N, Colonia Agrícola Bella Vista, 52149 Metepec, MEX, Mexico
2Dirección de Investigación Tecnológica, Instituto Nacional de Investigaciones Nucleares (ININ), Carretera México-Toluca S/N, La Marquesa, 52750 Ocoyoacac, MEX, Mexico

Received 22 July 2016; Accepted 21 November 2016

Academic Editor: Julie J. M. Mesa

Copyright © 2016 Anete Jessica Arcos-Arévalo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Agencia para Sustancias Tóxicas y el Registro de Enfermedades (ATSDR), Reseña Toxicológica del Cobre, Departamento de Salud y Servicios Humanos de los EE.UU., Servicio de Salud Pública, Atlanta, Ga, USA, 2004.
  2. Organización Mundial de la Salud, Guías para la Calidad del Agua Potable. Primer Apéndice a la Tercera Edición, vol. 1, Organización Mundial de la Salud, Geneva, Switzerland, 2006.
  3. L. Galicia-Chacón, A. Molina-Frechero, A. Oropeza-Oropeza, E. Gaona, and L. Juárez-López, “Análisis de la concentración de fluoruro en agua potable de la delegación Tláhuac, Ciudad de México,” Revista Internacional de Contaminación Ambiental, vol. 27, no. 4, 2011. View at Google Scholar
  4. R. Trejo-Vázquez, J. R. Treviño-Díaz, and E. García-Díaz, “Contaminación aguda por fluoruros en Aguascalientes,” Conciencia Tecnológica 36, Instituto Tecnológico de Aguascalientes, Aguascalientes, México, 2008. View at Google Scholar
  5. S. Vega-Gleason, Riesgo sanitario ambiental por la presencia de arsénico y fluoruros en los acuíferos de México. Comisión Nacional del Agua, Gerencia de Saneamiento y Calidad del Agua, 2012.
  6. S. K. Swaina, T. Patnaik, P. C. Patnaik, U. Jha, and R. K. Dey, “Development of new alginate entrapped Fe(III)–Zr(IV) binary mixed oxide for removal of fluoride from water bodies,” Chemical Engineering Journal, vol. 215-216, pp. 763–771, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Karthikeyan, K. K. S. Kumar, and K. P. Elango, “Batch sorption studies on the removal of fluoride ions from water using eco-friendly conducting polymer/bio-polymer composites,” Desalination, vol. 267, no. 1, pp. 49–56, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Viswanathan and S. Meenakshi, “Selective fluoride adsorption by a hydrotalcite/chitosan composite,” Applied Clay Science, vol. 48, no. 4, pp. 607–611, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Tomar, S. Prasad, and D. Kumar, “Adsorptive removal of fluoride from water samples using Zr-Mn composite material,” Microchemical Journal, vol. 111, pp. 116–124, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Tomar, S. Prasad, and D. Kumar, “Adsorptive removal of fluoride from aqueous media using citrus limonum (lemon) leaf,” Microchemical Journal, vol. 112, pp. 97–103, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Thakre, S. Jagtap, A. Bansiwal, N. Labhsetwar, and S. Rayalu, “Synthesis of La-incorporated chitosan beads for fluoride removal from water,” Journal of Fluorine Chemistry, vol. 131, no. 3, pp. 373–377, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Biswas, K. Gupta, A. Goswami, and U. C. Ghosh, “Fluoride removal efficiency from aqueous solution by synthetic iron(III)-aluminum(III)-chromium(III) ternary mixed oxide,” Desalination, vol. 255, no. 1–3, pp. 44–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Liu, W.-Y. Li, Y. Liu, Q. Zeng, and S. Hong, “Titanium(IV) hydrate based on chitosan template for defluoridation from aqueous solution,” Applied Surface Science, vol. 293, pp. 46–54, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. García-Sánchez, M. Solache-Ríos, V. Martínez-Miranda, and C. Solís Morelos, “Removal of fluoride ions from drinking water and fluoride solutions by aluminum modified iron oxides in a column system,” Journal of Colloid and Interface Science, vol. 407, pp. 410–415, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. M. G. Sujana, A. Mishra, and B. C. Acharya, “Hydrous ferric oxide doped alginate beads for fluoride removal: adsorption kinetics and equilibrium studies,” Applied Surface Science, vol. 270, pp. 767–776, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Jagtap, D. Thakre, S. Wanjari, S. Kamble, N. Labhsetwar, and S. Rayalu, “New modified chitosan-based adsorbent for defluoridation of water,” Journal of Colloid and Interface Science, vol. 332, no. 2, pp. 280–290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Viswanathan and S. Meenakshi, “Enriched fluoride sorption using alumina/chitosan composite,” Journal of Hazardous Materials, vol. 178, no. 1-3, pp. 226–232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Paudyal, B. Pangeni, K. Inoue et al., “Adsorptive removal of trace concentration of fluoride ion from water by using dried orange juice residue,” Chemical Engineering Journal, vol. 223, pp. 844–853, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Annouar, M. Mountadar, A. Soufiane, A. Elmidaoui, and M. A. M. Sahli, “Defluoridation of underground water by adsorption on the chitosan and by electrodialysis,” Desalination, vol. 165, p. 437, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Bhatnagar, E. Kumar, and M. Sillanpää, “Fluoride removal from water by adsorption—a review,” Chemical Engineering Journal, vol. 171, no. 3, pp. 811–840, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Miretzky and A. Fernandez-Cirelli, “Fluoride removal from water by chitosan derivatives and composites: a review,” Journal of Fluorine Chemistry, vol. 132, no. 4, pp. 231–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Viswanathan, C. S. Sundaram, and S. Meenakshi, “Removal of fluoride from aqueous solution using protonated chitosan beads,” Journal of Hazardous Materials, vol. 161, no. 1, pp. 423–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Huang, B. Yang, Q. Liu, and K. Ding, “Removal of fluoride ions from aqueous solutions using protonated cross-linked chitosan particles,” Journal of Fluorine Chemistry, vol. 141, pp. 29–34, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Jagtap, M. K. Yenkie, S. Das, and S. Rayalu, “Synthesis and characterization of lanthanum impregnated chitosan flakes for fluoride removal in water,” Desalination, vol. 273, no. 2-3, pp. 267–275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. D. H. K. Reddy and S.-M. Lee, “Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions,” Advances in Colloid and Interface Science, vol. 201-202, pp. 68–93, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Jeon and W. H. Höll, “Chemical modification of chitosan and equilibrium study for mercury ion removal,” Water Research, vol. 37, no. 19, pp. 4770–4780, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Shen, H. Chen, S. Wu et al., “Highly efficient detoxification of Cr(VI) by chitosan-Fe(III) complex: process and mechanism studies,” Journal of Hazardous Materials, vol. 244-245, pp. 689–697, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Wang and B. G. Min, “Cadmium sorption properties of poly (vinyl alcohol)/hydroxyapatite cryogels: I. kinetic and isotherm studies,” Journal of Sol-Gel Science and Technology, vol. 43, no. 1, pp. 99–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Wang and B. G. Min, “Cadmium sorption properties of poly(vinyl alcohol)/hydroxyapatite cryogels: II. Effects of operating parameters,” Journal of Sol-Gel Science and Technology, vol. 45, no. 1, pp. 17–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. I. E. Veleshko, V. V. Nikonorov, A. N. Veleshko et al., “Sorption of Eu(III) from solutions of covalently cross-linked chitosan cryogels,” Fibre Chemistry, vol. 42, no. 6, pp. 364–369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. V. V. Nikonorov, R. V. Ivanov, N. R. Kil’deeva, L. N. Bulatnikova, and V. I. Lozinskii, “Synthesis and characteristics of cryogels of chitosan crosslinked by glutaric aldehyde,” Polymer Science Series A, vol. 52, no. 8, pp. 828–834, 2010. View at Publisher · View at Google Scholar
  32. K. Tekin, L. Uzun, Ç. A. Şahin, S. Bektaş, and A. Denizli, “Preparation and characterization of composite cryogels containing imidazole group and use in heavy metal removal,” Reactive & Functional Polymers, vol. 71, no. 10, pp. 985–993, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Garcia-Gonzalez, R. R. E. Zavala-Arce, P. Avila-Perez et al., “Síntesis y caracterización de un material criogénico a partir de quitosano y celulosa,” Afinidad, vol. 71, no. 567, 2014. View at Google Scholar
  34. N. Viswanathan and S. Meenakshi, “Selective sorption of fluoride using Fe(III) loaded carboxylated chitosan beads,” Journal of Fluorine Chemistry, vol. 129, no. 6, pp. 503–509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. C. J. Creswell, O. Runquist, and M. M. Campbell, Editorial Diana, México, 1972.
  36. G. Brust, Espectroscopía Infrarroja, Universidad del Sur de Mississippi, 1997.
  37. A. Bismarck, R. Tahhan, J. Springer et al., “Influence of fluorination on the properties of carbon fibres,” Journal of Fluorine Chemistry, vol. 84, no. 2, pp. 127–134, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. C. D. Wagner, J. F. Moulder, L. E. David, and W. M. Riggs, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, Norwalk, Conn, USA, 1989.
  39. N. Viswanathan, C. Sairam Sundaram, and S. Meenakshi, “Development of multifunctional chitosan beads for fluoride removal,” Journal of Hazardous Materials, vol. 167, no. 1-3, pp. 325–331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Viswanathan, C. Sairam Sundaram, and S. Meenakshi, “Removal of fluoride from aqueous solution using protonated chitosan beads,” Journal of Hazardous Materials, vol. 161, no. 1, pp. 423–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Valdés, M. Sánchez-Polo, and C. A. Zaror, “Impacto del tratamiento con ozono sobre las propiedades superficiales del carbón activado,” Ingeniare. Revista Chilena de Ingeniería, vol. 19, no. 2, pp. 174–185, 2011. View at Publisher · View at Google Scholar
  42. L. Giraldo and J. C. Moreno, “Relación entre la entalpía de inmersión de un carbón activado en soluciones acuosas de Pb2+ y los parámetros de adsorción,” Revista Colombiana de Química, vol. 35, no. 1, pp. 41–49, 2006. View at Google Scholar
  43. N. Viswanathan, C. S. Sundaram, and S. Meenakshi, “Sorption behaviour of fluoride on carboxylated cross-linked chitosan beads,” Colloids and Surfaces B: Biointerfaces, vol. 68, no. 1, pp. 48–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Viswanathan, C. Sairam Sundaram, and S. Meenakshi, “Development of multifunctional chitosan beads for fluoride removal,” Journal of Hazardous Materials, vol. 167, no. 1–3, pp. 325–331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. S. Ho, J. F. Porter, and G. McKay, “Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems,” Water, Air, and Soil Pollution, vol. 141, no. 1–4, pp. 1–33, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Gerente, V. K. C. Lee, P. Le Cloirec, and G. McKay, “Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review,” Critical Reviews in Environmental Science and Technology, vol. 37, no. 1, pp. 41–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Bhattacharyya and S. K. Ray, “Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol,” Chemical Engineering Journal, vol. 260, pp. 269–283, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Kayranli, “Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study,” Chemical Engineering Journal, vol. 173, no. 3, pp. 782–791, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Liu and Y.-J. Liu, “Review: Biosorption isotherms, kinetics and thermodynamics,” Separation and Purification Technology, vol. 61, no. 3, pp. 229–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. V. Vimonses, S. Lei, B. Jin, C. W. K. Chow, and C. Saint, “Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials,” Chemical Engineering Journal, vol. 148, no. 2-3, pp. 354–364, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. W. S. W. Ngah and S. Fatinathan, “Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies,” Journal of Environmental Management, vol. 91, no. 4, pp. 958–969, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Erşan, E. Baĝda, and E. Baĝda, “Investigation of kinetic and thermodynamic characteristics of removal of tetracycline with sponge like, tannin based cryogels,” Colloids and Surfaces B: Biointerfaces, vol. 104, pp. 75–82, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. K. U. Ahamad and M. Jawed, “Kinetics, equilibrium and breakthrough studies for Fe(II) removal by wooden charcoal: a low-cost adsorbent,” Desalination, vol. 251, no. 1-3, pp. 137–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Liang, Y. Zhang, D. Wang, Y. Xu, and L. Luo, “Preparation of mixed rare earths modified chitosan for fluoride adsorption,” Journal of Rare Earths, vol. 31, no. 8, pp. 817–822, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Ma, Y. Shen, C. Shen, Y. Wen, and W. Liu, “Al-doping chitosan-Fe(III) hydrogel for the removal of fluoride from aqueous solutions,” Chemical Engineering Journal, vol. 248, pp. 98–106, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. A. S. Elsherbiny, “Adsorption kinetics and mechanism of acid dye onto montmorillonite from aqueous solutions: stopped-flow measurements,” Applied Clay Science, vol. 83-84, pp. 56–62, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Thilagan, S. Gopalakrishnan, and T. Kannadasan, “Thermodynamic study on adsorption of Copper (II) ions in aqueous solution by Chitosan blended with Cellulose & cross linked by Formaldehyde, Chitosan immobilised on Red Soil, Chitosan reinforced by Banana stem fibre,” International Journal of Scientific Research Engineering & Technology, vol. 2, no. 1, 2013. View at Google Scholar
  58. X. Li, Y. Li, S. Zhang, and Z. Ye, “Preparation and characterization of new foam adsorbents of poly(vinyl alcohol)/chitosan composites and their removal for dye and heavy metal from aqueous solution,” Chemical Engineering Journal, vol. 183, pp. 88–97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Cortés-Martínez, M. T. Olguín, and M. Solache-Ríos, “Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems,” Desalination, vol. 258, no. 1–3, pp. 164–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. G. O. El Sayed and H. A. Dessouki, “Biosorption of Ni (II) And Cd (II) ions from aqueous solutions onto rice straw,” Chemical Sciences Journal, vol. CSJ-9, pp. 1–11, 2010. View at Publisher · View at Google Scholar
  61. M. Alkan, Ö. Demirbaş, and M. Doğan, “Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite,” Microporous and Mesoporous Materials, vol. 101, no. 3, pp. 388–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Viswanathan and S. Meenakshi, “Synthesis of Zr(IV) entrapped chitosan polymeric matrix for selective fluoride sorption,” Colloids and Surfaces B: Biointerfaces, vol. 72, no. 1, pp. 88–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. M. D. Burghardt, Ingeniería Termodinámica, 2nd edition, 1984.
  64. J. M. Smith, H. C. Van Ness, and M. M. Abbott, Introducción a la Termodinámica en Ingeniería Química, Mcgraw-Hill, Ciudad de México, México, 5th edition, 1997.
  65. M. Al-Ghouti, M. A. M. Khraisheh, M. N. M. Ahmad, and S. Allen, “Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: A Kinetic Study,” Journal of Colloid and Interface Science, vol. 287, no. 1, pp. 6–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Crini and P.-M. Badot, “Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature,” Progress in Polymer Science, vol. 33, no. 4, pp. 399–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Pérez, J. González, and L. A. Delgado, “Estudio termodinámico del proceso de adsorción de iones de Ni y V por parte de ligninas precipitadas del licor negro Kraft,” Revista Latinoamericana de Metalurgia y Materiales, vol. 31, no. 2, pp. 168–181, 2011. View at Google Scholar