Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2016 (2016), Article ID 8358960, 5 pages
http://dx.doi.org/10.1155/2016/8358960
Research Article

Photodegradation of Sulfadiazine in Aqueous Solution and the Affecting Factors

Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of the People’s Republic of China, 8 Jiangwangmiao Street, Nanjing 210042, China

Received 29 March 2016; Revised 7 June 2016; Accepted 13 June 2016

Academic Editor: Athanasios Katsoyiannis

Copyright © 2016 Xuesen Bian and Jibing Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Sarmah, M. T. Meyer, and A. B. A. Boxall, “A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment,” Chemosphere, vol. 65, no. 5, pp. 725–759, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. T. X. Le and Y. Munekage, “Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam,” Marine Pollution Bulletin, vol. 49, no. 11-12, pp. 922–929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. G. Capone, D. P. Weston, V. Miller, and C. Shoemaker, “Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture,” Aquaculture, vol. 145, no. 1–4, pp. 55–75, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Christian, R. J. Schneider, H. A. Färber, D. Skutlarek, M. T. Meyer, and H. E. Goldbach, “Determination of antibiotic residues in manure, soil, and surface waters,” Acta Hydrochimica et Hydrobiologica, vol. 31, no. 1, pp. 36–44, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Thiele-Bruhn and I.-C. Beck, “Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass,” Chemosphere, vol. 59, no. 4, pp. 457–465, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. B. G. Bradel, W. Preil, and H. Jeske, “Remission of the free-branching pattern of Euphorbia pulcherrima by tetracycline treatment,” Journal of Phytopathology, vol. 148, no. 11-12, pp. 587–590, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Wollenberger, B. Halling-Sørensen, and K. O. Kusk, “Acute and chronic toxicity of veterinary antibiotics to Daphnia magna,” Chemosphere, vol. 40, no. 7, pp. 723–730, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Migliore, G. Brambilla, P. Casoria, C. Civitareale, S. Cozzolino, and L. Gaudio, “Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliopsida),” Agriculture, Ecosystems and Environment, vol. 60, no. 2-3, pp. 121–128, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Thiele-Bruhn, “Pharmaceutical antibiotic compounds in soils—a review,” Journal of Plant Nutrition and Soil Science, vol. 166, no. 2, pp. 145–167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Sukul and M. Spiteller, “Sulfonamides in the environment as veterinary drugs,” Reviews of Environmental Contamination and Toxicology, vol. 187, pp. 67–101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. B. A. Boxall, L. A. Fogg, P. A. Blackwell, P. Kay, E. J. Pemberton, and A. Croxford, “Veterinary medicines in the environment,” Reviews of Environmental Contamination and Toxicology, vol. 180, pp. 1–91, 2004. View at Google Scholar · View at Scopus
  12. K. M. Doretto, L. M. Peruchi, and S. Rath, “Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils,” Science of the Total Environment, vol. 476-477, pp. 406–414, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. A. B. A. Boxall, P. Blackwell, R. Cavallo, P. Kay, and J. Tolls, “The sorption and transport of a sulphonamide antibiotic in soil systems,” Toxicology Letters, vol. 131, no. 1-2, pp. 19–28, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Ingerslev and B. Halling-Sorensen, “Biodegradability properties of sulfonamides in activated sludge,” Environmental Toxicology and Chemistry, vol. 19, no. 10, pp. 2467–2473, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Sukul, M. Lamshöft, S. Zühlke, and M. Spiteller, “Photolysis of 14C-sulfadiazine in water and manure,” Chemosphere, vol. 71, no. 4, pp. 717–725, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. L. Boreen, W. A. Arnold, and K. McNeill, “Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: identification of an SO2 extrusion photoproduct,” Environmental Science and Technology, vol. 39, no. 10, pp. 3630–3638, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Jiang, Z. Zheng, Z. Xu, and S. Zheng, “Preparation and characterization of SiO2-pillared H2Ti4O9 and its photocatalytic activity for methylene blue degradation,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 1250–1256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. L. Boreen, W. A. Arnold, and K. McNeill, “Photochemical fate of sulfa drugs in then aquatic environment: sulfa drugs containing five-membered heterocyclic groups,” Environmental Science and Technology, vol. 38, no. 14, pp. 3933–3940, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. G. Gonzalez, E. Oliveros, M. Wörner, and A. M. Braun, “Vacuum-ultraviolet photolysis of aqueous reaction systems,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 5, no. 3, pp. 225–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Zang, C.-Y. Liu, and X.-M. Ren, “Photochemistry of semiconductor particles. Part 4.—effects of surface condition on the photodegradation of 2,4-dichlorophenol catalysed by TiO2 suspensions,” Journal of the Chemical Society, Faraday Transactions, vol. 91, no. 5, pp. 917–923, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. C. B. Almquist and P. Biswas, “The photo-oxidation of cyclohexane on titanium dioxide: an investigation of competitive adsorption and its effects on product formation and selectivity,” Applied Catalysis A: General, vol. 214, no. 2, pp. 259–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Muruganandham and M. Swaminathan, “Photochemical oxidation of reactive azo dye with UV-H2O2 process,” Dyes and Pigments, vol. 62, no. 3, pp. 269–275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. Q. Hu, C. Zhang, Z. Wang et al., “Photodegradation of methyl tert-butyl ether (MTBE) by UV/H2O2 and UV/TiO2,” Journal of Hazardous Materials, vol. 154, no. 1–3, pp. 795–803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Minero, S. Chiron, G. Falletti et al., “Photochemincal processes involving nitrite in surface water samples,” Aquatic Sciences, vol. 69, no. 1, pp. 71–85, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Mark, H.-G. Korth, H.-P. Schuchmann, and C. Von Sonntag, “The photochemistry of aqueous nitrate ion revisited,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 101, no. 2-3, pp. 89–103, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. M. V. Shankar, S. Nélieu, L. Kerhoas, and J. Einhorn, “Photo-induced degradation of diuron in aqueous solution by nitrites and nitrates: kinetics and pathways,” Chemosphere, vol. 66, no. 4, pp. 767–774, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. I. K. Konstantinou, A. K. Zarkadis, and T. A. Albanis, “Photodegradation of selected herbicides in various natural waters and soils under environmental conditions,” Journal of Environmental Quality, vol. 30, no. 1, pp. 121–130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Zainal, C. Y. Lee, M. Z. Hussein, A. Kassim, and N. A. Yusof, “Effect of supporting electrolytes in electrochemically-assisted photodegradation of an azo dye,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 172, no. 3, pp. 316–321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. W. Lam, K. Tantuco, and S. A. Mabury, “PhotoFate: a new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters,” Environmental Science and Technology, vol. 37, no. 5, pp. 899–907, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Vione, G. Falletti, V. Maurino et al., “Sources and sinks of hydroxyl radicals upon irradiation of natural water samples,” Environmental Science and Technology, vol. 40, no. 12, pp. 3775–3781, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. K.-H. Wang, Y.-H. Hsieh, C.-H. Wu, and C.-Y. Chang, “The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO2 aqueous suspension,” Chemosphere, vol. 40, no. 4, pp. 389–394, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Neamţu and F. H. Frimmel, “Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation,” Science of the Total Environment, vol. 369, no. 1–3, pp. 295–306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Wang, C.-S. Hong, and F. Fang, “Effect of solution matrix on TiO2 photocatalytic degradation of 2-chlorobiphenyl,” Environmental Engineering Science, vol. 16, no. 6, pp. 433–440, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Andreozzi, V. Caprio, A. Insola, and R. Marotta, “Advanced oxidation processes (AOP) for water purification and recovery,” Catalysis Today, vol. 53, no. 1, pp. 51–59, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. R. P. Schwarzenbach, P. M. Gschwend, and D. M. Imboden, “Indirect photolysis: reactions with photooxidants in natural waters and in the atmosphere,” in Environmental Organic Chemistry, pp. 655–686, John Wiley & Sons, New Jersey, NJ, USA, 2002. View at Google Scholar
  36. I. Gultekin and N. H. Ince, “Degradation of reactive azo dyes by UV/H2O2: impact of radical scavengers,” Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, vol. 39, no. 4, pp. 1069–1081, 2004. View at Google Scholar
  37. W. Zhang, X. Xiao, T. An et al., “Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process,” Journal of Chemical Technology and Biotechnology, vol. 78, no. 7, pp. 788–794, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Zhang, T. An, M. Cui, G. Sheng, and J. Fu, “Effects of anions on the photocatalytic and photoelectrocatalytic degradation of reactive dye in a packed-bed reactor,” Journal of Chemical Technology and Biotechnology, vol. 80, no. 2, pp. 223–229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Sukul, M. Lamshöft, S. Zühlke, and M. Spiteller, “Sorption and desorption of sulfadiazine in soil and soil-manure systems,” Chemosphere, vol. 73, no. 8, pp. 1344–1350, 2008. View at Publisher · View at Google Scholar · View at Scopus