Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2017, Article ID 5197613, 11 pages
Research Article

Kinetics of the Polyphenolic Content and Radical Scavenging Capacity in Olives through On-Tree Ripening

1Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, (CITAB-UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
2Department of Food Technology, EPSO, Miguel Hernández University, Ctra. Beniel km 3.2, Orihuela, 03312 Alicante, Spain
3National Institute for Agricultural and Veterinary Research (INIAV I.P.), Elvas, Portugal

Correspondence should be addressed to Irene Gouvinhas; tp.datu@sahnivuogi and Raúl Domínguez-Perles; tp.datu@selrepdr

Received 8 September 2016; Accepted 1 December 2016; Published 2 January 2017

Academic Editor: Sevgi Kolaylı

Copyright © 2017 Irene Gouvinhas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Olive fruits, as well as their corresponding oil, represent an interesting source of phytochemicals, mainly phenolic compounds, which arise as secondary metabolites, resulting from the plant’s response to biotic and abiotic stresses. Therefore, olive fruits from three distinct cultivars (“Cobrançosa,” “Galega Vulgar,” and “Picual”) grown in Portugal and displaying different degree of resistance to biotic and abiotic stresses have been studied in relation to the concentration of total phenolic compounds, orthodiphenols and flavonoids, besides antioxidant capacity (DPPH, ABTS, FRAP, and ), in three maturation stages and two distinct harvest seasons (2012-2013). Generally, a decrease of all phenolic contents throughout the maturation stages has been observed, while, concerning cultivar, green olives of “Cobrançosa” showed the highest values for all contents assessed, denoting a strong influence of the genetic background. The same trend has not been observed regarding antioxidant activity, since Cobrançosa and Galega Vulgar cultivars presented the highest values only for the DPPH and assays. Moreover, multivariate analyses pointed to the preponderance of the cultivars’ phenolic composition in the semiripe stage for the resistance to biotic stress, with “Galega” the most susceptible cultivar, presenting the lowest contents at this maturation stage, whereas “Picual” displayed the most pronounced phytochemical response.