Review Article

A Comprehensive Review on Thermal Coconversion of Biomass, Sludge, Coal, and Their Blends Using Thermogravimetric Analysis

Table 7

A list of literature about the thermal coconversion of sewage sludge and lignocellulosic biomass using thermogravimetric analysis.

YearSampleExperimental facilityBlending SS : BiomassThermal behaviorMediumInitial Mass mgTemp range (°C)Heating rate (°C/min) (%/min)TDTGmaxc (°C)Ref.

2017Rice husk and sewage sludgeTG-DTG70 : 30
50 : 50
30 : 70
CombustionAir1025–100025272.1
269.1
264.8
532.5
559.6
547.5
9.75
10.90
10.05
333.8
295.1
338.5
[77]

2016Sewage sludge and rice strawTG-DTA25 : 75
50 : 2.50
75 : 25
CombustionAir525–80020263
258
269
765
745
714
9
12.5
30
299.2
299.3
293.1
[78]

2016Sewage sludge and biomassTG-DTA80 : 20
60 : 40
40 : 60
20 : 80
PyrolysisNitrogen30–100020179
180
181
182
727
719
603
602
343
344
344
344
6.54
8.54
10.59
12.68
[79]

2015Sludge + lingo- cellulosic biomassTG-DTA50 : 50PyrolysisNitrogen1025–90015200575370

2015Sewage sludge and rice strawTG-DTA50 : 50PyrolysisNitrogen150–5002020050016330

2015Sewage sludge and sawdustTG-DTA25 : 75
50 : 50
75 : 25
PyrolysisNitrogen1025–100010315900650

2013Sewage sludge and rice huskTG-DTG10 : 90
20 : 80
30 : 70
50 : 50
70 : 30
PyrolysisNitrogen1025–900202005006.05310

a = Tv; b = Tf; c = −DTGmax; d = TDTGmax.