Table of Contents
Journal of Climatology
Volume 2013, Article ID 390945, 15 pages
http://dx.doi.org/10.1155/2013/390945
Research Article

Efficiencies of Inhomogeneity-Detection Algorithms: Comparison of Different Detection Methods and Efficiency Measures

Centre for Climate Change, University of Rovira i Virgili, Campus Terres de l’Ebre, Avenue Remolins 13-15, 43500 Tortosa Tarragona, Spain

Received 18 March 2013; Accepted 2 September 2013

Academic Editors: S. Feng, L. Makra, and A. P. Trishchenko

Copyright © 2013 Peter Domonkos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WMO Hungarian Meteorological Service, Proceedings of the First Seminar for Homogenization of Surface Climatological Data, Edited by S. Szalai, Hungarian Meteorlogical Service, Budapest, Hungary, 144 pages, 1996.
  2. WMO Hungarian Meteorological Service, Proceedings of the Second Seminar for Homogenization of Surface Climatological Data, Edited by S. Szalai, T. Szentimrey, and Cs. Szinell, WCDMP-41, WMO-TD 932. WMO, Geneva, Switzerland, 214 pages, 1999.
  3. WMO Hungarian Meteorological Service, Third Seminar for Homogenization and Quality Control in Climatological Databases, Edited by S. Szalai, Hungarian Meteorological Service, 2001, http://www.met.hu/.
  4. WMO Hungarian Meteorological Service, Fourth Seminar for Homogenization and Quality Control in Climatological Databases, Edited by S. Szalai, WCDMP-56, WMO-TD, 1236, WMO, Geneva, Switzerland, 243 pages, 2004.
  5. WMO Hungarian Meteorological Service, Proceedings of the Fifth Seminar for Homogenization and Quality Control in Climatological Databases, Edited by M. Lakatos, T. Szentimrey, Z. Bihari, and S. Szalai, WCDMP-No. 71, WMO-TD, 1493, WMO, Geneva, Switzerland, 203 pages, 2008.
  6. WMO Hungarian Meteorological Service, Proceedings of the Sixth Seminar for Homogenization and Quality Control in Climatological Databases, Edited by M. Lakatos, T. Szentimrey, Z. Bihari, and S. Szalai, WCDMP-No. 76, WMO-TD., 1576, WMO, Geneva, Switzerland, 116 pages, 2010.
  7. M. Brunet, O. Saladié, P. Jones et al., “The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850–2003),” International Journal of Climatology, vol. 26, no. 13, pp. 1777–1802, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. D. P. Rayner, “Wind run changes: the dominant factor affecting pan evaporation trends in Australia,” Journal of Climate, vol. 20, no. 14, pp. 3379–3394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Staudt, M. J. Esteban-Parra, and Y. Castro-Díez, “Homogenization of long-term monthly Spanish temperature data,” International Journal of Climatology, vol. 27, no. 13, pp. 1809–1823, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Rusticucci and M. Renom, “Variability and trends in indices of quality-controlled daily temperature extremes in Uruguay,” International Journal of Climatology, vol. 28, no. 8, pp. 1083–1095, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. C. Sherwood, C. L. Meyer, R. J. Allen, and H. A. Titchner, “Robust tropospheric warming revealed by iteratively homogenized radiosonde data,” Journal of Climate, vol. 21, no. 20, pp. 5336–5350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Menne, C. N. Williams Jr., and R. S. Vose, “The U.S. Historical Climatology Network monthly temperature data, version 2,” Bulletin of the American Meteorological Society, vol. 90, pp. 993–1007, 2009. View at Google Scholar
  13. I. Auer, R. Böhm, A. Jurković et al., “A new instrumental precipitation dataset for the greater Alpine region for the period 1800–2002,” International Journal of Climatology, vol. 25, pp. 139–166, 2005. View at Publisher · View at Google Scholar
  14. E. Aguilar, I. Auer, M. Brunet, T. C. Peterson, and J. Wieringa, “WMO Guidelines on climate metadata and homogenization,” WCDMP 53, WMO, Geneva, Switzerland, 2003. View at Google Scholar
  15. T. C. Peterson, D. R. Easterling, and T. R. Karl, “Homogeneity adjustments of in situ atmospheric climate data: a review,” International Journal of Climatology, vol. 18, pp. 1493–1517, 1998. View at Google Scholar
  16. M. J. Menne and C. N. Williams Jr., “Detection of undocumented changepoints using multiple test statistics and composite reference series,” Journal of Climate, vol. 18, no. 20, pp. 4271–4286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Reeves, J. Chen, X. L. Wang, R. Lund, and X. Lu, “A review and comparison of change-point detection techniques for climate data,” Journal of Applied Meteorology and Climatology, vol. 46, pp. 900–915, 2007. View at Google Scholar
  18. M. Brunet, O. Saladié, P. Jones et al., “A case-study/guidance on the development of long-term daily adjusted temperature datasets,” Tech. Rep. WC-DMP-66/WMO-TD-1425, WMO, Geneva, Switzerland, 2008. View at Google Scholar
  19. B. Trewin, “A daily homogenized temperature data set for Australia,” International Journal of Climatology, vol. 33, pp. 1510–1529, 2013. View at Google Scholar
  20. S. C. Sherwood, “Simultaneous detection of climate change and observing biases in a network with incomplete sampling,” Journal of Climate, vol. 20, no. 15, pp. 4047–4062, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. P. M. Della-Marta and H. Wanner, “A method of homogenizing the extremes and mean of daily temperature measurements,” Journal of Climate, vol. 19, no. 17, pp. 4179–4197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. X. L. Wang, H. Chen, Y. Wu, Y. Feng, and Q. Pu, “New techniques for the detection and adjustment of shifts in daily precipitation data series,” Journal of Applied Meteorology and Climatology, vol. 49, no. 12, pp. 2416–2436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Li, Z. Yan, L. Cao, and P. Jones, “Adjusting inhomogeneous daily temperature variability using wavelet analysis,” International Journal of Climatology, 2013. View at Publisher · View at Google Scholar
  24. V. Alexandrov, M. Schneider, E. Koleva, and J.-M. Moisselin, “Climate variability and change in Bulgaria during the 20th century,” Theoretical and Applied Climatology, vol. 79, no. 3-4, pp. 133–149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. F. G. Kuglitsch, A. Toreti, E. Xoplaki, P. M. Della-Marta, J. Luterbacher, and H. Wanner, “Homogenization of daily maximum temperature series in the Mediterranean,” Journal of Geophysical Research D, vol. 114, no. 15, Article ID D15108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. C. Costa and A. Soares, “Trends in extreme precipitation indices derived from a daily rainfall database for the South of Portugal,” International Journal of Climatology, vol. 29, no. 13, pp. 1956–1975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Yan, Z. Li, Q. Li, and P. Jones, “Effects of site change and urbanisation in the Beijing temperature series 1977–2006,” International Journal of Climatology, vol. 30, no. 8, pp. 1226–1234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. T. C. Peterson and D. R. Easterling, “Creation of homogeneous composite climatological reference series,” International Journal of Climatology, vol. 14, no. 6, pp. 671–679, 1994. View at Google Scholar · View at Scopus
  29. M. Begert, T. Schlegel, and W. Kirchhofer, “Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000,” International Journal of Climatology, vol. 25, no. 1, pp. 65–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. T. DeGaetano, “Attributes of several methods for detecting discontinuities in mean temperature series,” Journal of Climate, vol. 19, no. 5, pp. 838–853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. C. Gonzalez-Hidalgo, J.-A. Lopez-Bustins, P. Štepánek, J. Martin-Vide, and M. de Luis, “Monthly precipitation trends on the Mediterranean fringe of the Iberian Peninsula during the second-half of the twentieth century (1951–2000),” International Journal of Climatology, vol. 29, no. 10, pp. 1415–1429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. M. Vicente-Serrano, S. Beguería, J. I. López-Moreno, M. A. García-Vera, and P. Štěpánek, “A complete daily precipitation database for northeast Spain: reconstruction, quality control, and homogeneity,” International Journal of Climatology, vol. 30, pp. 1146–1163, 2010. View at Publisher · View at Google Scholar
  33. P. Domonkos and P. Štěpánek, “Statistical characteristics of detectable inhomogeneities in observed meteorological time series,” Studia Geophysica et Geodaetica, vol. 53, pp. 239–260, 2009. View at Publisher · View at Google Scholar
  34. T. A. Buishand, “Some methods for testing the homogeneity of rainfall records,” Journal of Hydrology, vol. 58, no. 1-2, pp. 11–27, 1982. View at Google Scholar · View at Scopus
  35. D. R. Easterling and T. C. Peterson, “A new method for detecting undocumented discontinuities in climatological time series,” International Journal of Climatology, vol. 15, no. 4, pp. 369–377, 1995. View at Google Scholar · View at Scopus
  36. J. R. Lanzante, “Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data,” International Journal of Climatology, vol. 16, no. 11, pp. 1197–1226, 1996. View at Google Scholar · View at Scopus
  37. J. F. Ducré-Robitaille, L. A. Vincent, and G. Boulet, “Comparison of techniques for detection of discontinuities in temperature series,” International Journal of Climatology, vol. 23, pp. 1087–1101, 2003. View at Publisher · View at Google Scholar
  38. M. Syrakova, “Homogeneity analysis of climatological time series—experiments and problems,” Időjárás, vol. 107, pp. 31–48, 2003. View at Google Scholar
  39. G. Drogue, O. Mestre, L. Hoffmann, J.-F. Iffly, and L. Pfister, “Recent warming in a small region with semi-oceanic climate, 1949–1998: what is the ground truth?” Theoretical and Applied Climatology, vol. 81, no. 1-2, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. M. J. Menne and C. N. Williams Jr., “Homogenization of temperature series via pairwise comparisons,” Journal of Climate, vol. 22, no. 7, pp. 1700–1717, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Domonkos, “Testing of homogenisation methods: purposes, tools and problems of implementation,” in Proceedings of the 5th Seminar and Quality Control in Climatological Databases, WCDMP-No. 71, WMO-TD, 1493, pp. 126–145, WMO, 2008.
  42. P. Domonkos, “Efficiency evaluation for detecting inhomogeneities by objective homogenisation methods,” Theoretical and Applied Climatology, vol. 105, pp. 455–467, 2011. View at Publisher · View at Google Scholar
  43. P. G. F. Gérard-Marchant, D. E. Stooksbury, and L. Seymour, “Methods for starting the detection of undocumented multiple changepoints,” Journal of Climate, vol. 21, no. 18, pp. 4887–4899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Beaulieu, O. Seidou, T. B. M. J. Ouarda, X. Zhang, G. Boulet, and A. Yagouti, “Intercomparison of homogenization techniques for precipitation data,” Water Resources Research, vol. 44, no. 2, Article ID W02425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. A. Titchner, P. W. Thorne, M. P. McCarthy, S. F. B. Tett, L. Haimberger, and D. E. Parker, “Critically reassessing tropospheric temperature trends from radiosondes using realistic validation experiments,” Journal of Climate, vol. 22, no. 3, pp. 465–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Venema, O. Mestre, E. Aguilar et al., “Benchmarking monthly homogenization algorithms,” Climate of the Past, vol. 8, pp. 89–115, 2012. View at Publisher · View at Google Scholar
  47. H. Caussinus and F. Lyazrhi, “Choosing a linear model with a random number of change-points and outliers,” Annals of the Institute of Statistical Mathematics, vol. 49, no. 4, pp. 761–775, 1997. View at Google Scholar · View at Scopus
  48. A. Moberg and H. Alexandersson, “Homogenization of Swedish temperature data—part II: homogenized gridded air temperature compared with a subset of global gridded air temperature since 1861,” International Journal of Climatology, vol. 17, no. 1, pp. 35–54, 1997. View at Google Scholar · View at Scopus
  49. L. A. Vincent, T. C. Peterson, V. R. Barros et al., “Observed trends in indices of daily temperature extremes in South America 1960–2000,” Journal of Climate, vol. 18, pp. 5011–5023, 2005. View at Publisher · View at Google Scholar
  50. T. C. Peterson, “Assessment of urban versus rural in situ surface temperatures in the contiguous United States: no difference found,” Journal of Climate, vol. 16, pp. 2941–2959, 2003. View at Google Scholar
  51. P. Domonkos, “Homogenising time series: beliefs, dogmas and facts,” Advances in Science and Research, vol. 6, pp. 167–172, 2011. View at Google Scholar
  52. R. Lund and J. Reeves, “Detection of undocumented changepoints: a revision of the two-phase regression model,” Journal of Climate, vol. 15, no. 17, pp. 2547–2554, 2002. View at Google Scholar · View at Scopus
  53. H. Caussinus and O. Mestre, “Detection and correction of artificial shifts in climate series,” Journal of the Royal Statistical Society C, vol. 53, no. 3, pp. 405–425, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Picard, E. Lebarbier, M. Hoebeke, G. Rigaill, B. Thiam, and S. Robin, “Joint segmentation, calling, and normalization of multiple CGH profiles,” Biostatistics, vol. 12, no. 3, pp. 413–428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Domonkos, “Adapted caussinus-mestre algorithm for networks of temperature series (ACMANT),” International Journal of Geosciences, vol. 2, pp. 293–309, 2011. View at Publisher · View at Google Scholar
  56. V. C. Slonosky and E. Graham, “Canadian pressure observations and circulation variability: links to air temperature,” International Journal of Climatology, vol. 25, no. 11, pp. 1473–1492, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Aguilar, T. C. Peterson, P. Ramírez et al., “Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003,” Journal of Geophysical Research, vol. 110, Article ID D23107, 2005. View at Publisher · View at Google Scholar
  58. M. Brunetti, M. Maugeri, F. Monti, and T. Nanni, “Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series,” International Journal of Climatology, vol. 26, no. 3, pp. 345–381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Camuffo, C. Cocheo, and G. Sturaro, “Corrections of systematic errors, data homogenisation and climatic analysis of the Padova pressure series (1725–1999),” Climatic Change, vol. 78, no. 2-4, pp. 493–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Brázdil, K. Chromá, P. Dobrovolný, and R. Tolasz, “Climate fluctuations in the Czech Republic during the period 1961–2005,” International Journal of Climatology, vol. 29, pp. 223–242, 2009. View at Publisher · View at Google Scholar
  61. Q. Li, H. Zhang, J. I. Chen, W. Li, X. Liu, and P. Jones, “A mainland china homogenized historical temperature dataset of 1951–2004,” Bulletin of the American Meteorological Society, vol. 90, no. 8, pp. 1062–1065, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Türkes, T. Koç, and F. Sariş, “Spatiotemporal variability of precipitation total series over Turkey,” International Journal of Climatology, vol. 29, pp. 1056–1074, 2009. View at Publisher · View at Google Scholar
  63. M. Syrakova and M. Stefanova, “Homogenization of Bulgarian temperature series,” International Journal of Climatology, vol. 29, no. 12, pp. 1835–1849, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. J. R. Christy, W. B. Norris, K. Redmond, and K. P. Gallo, “Methodology and results of calculating central California surface temperature trends: evidence of human-induced climate change?” Journal of Climate, vol. 19, no. 4, pp. 548–563, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. L. Haimberger, “Homogenization of radiosonde temperature time series using innovation statistics,” Journal of Climate, vol. 20, no. 7, pp. 1377–1403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. M. P. McCarthy, H. A. Titchner, P. W. Thorne, S. F. B. Tett, L. Haimberger, and D. E. Parker, “Assessing bias and uncertainty in the HadAT-adjusted radiosonde climate record,” Journal of Climate, vol. 21, no. 4, pp. 817–832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Szentimrey, “Multiple Analysis of Series for Homogenization (MASH),” in Proceedings of the 2nd Seminar for Homogenization of Surface Climatological Data, WCDMP 41, WMO-TD 962, pp. 27–46, WMO, 1999.
  68. L. A. Vincent, “A technique for the identification of inhomogeneities in Canadian temperature series,” Journal of Climate, vol. 11, no. 5, pp. 1094–1104, 1998. View at Google Scholar · View at Scopus
  69. H. Alexandersson, “A homogeneity test applied to precipitation data,” Journal of Climatology, vol. 6, no. 6, pp. 661–675, 1986. View at Google Scholar · View at Scopus
  70. H. Alexandersson and A. Moberg, “Homogemzation of Swedish temperature data—part I: homogeneity test for linear trends,” International Journal of Climatology, vol. 17, no. 1, pp. 25–34, 1997. View at Google Scholar · View at Scopus
  71. F. Wilcoxon, “Individual comparisons by ranking methods,” Biometric Bulletin, vol. 1, pp. 80–83, 1945. View at Google Scholar