Table of Contents
Journal of Computational Medicine
Volume 2014 (2014), Article ID 765457, 9 pages
http://dx.doi.org/10.1155/2014/765457
Research Article

2D-QSAR Study of Indolylpyrimidines Derivative as Antibacterial against Pseudomonas aeruginosa and Staphylococcus aureus: A Comparative Approach

Department of Pharmaceutical Chemistry, Sinhgad Institute of Pharmacy, Narhe, Pune 411041, India

Received 6 February 2014; Revised 26 April 2014; Accepted 26 April 2014; Published 5 June 2014

Academic Editor: Gabriela Mustata Wilson

Copyright © 2014 Prasanna A. Datar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Nicoll, “Pseudomonas aeruginosa: infections and treatment,” New England Journal of Medicine, vol. 332, pp. 616–617, 1995. View at Publisher · View at Google Scholar
  2. J. Vila and T. Pal, “Update on antibacterial resistance in low-income countries: factors favoring the emergence of resistance,” Open Infectious Diseases Journal, vol. 4, no. 1, pp. 38–54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Van Delden and B. H. Iglewski, “Cell-to-cell signaling and Pseudomonas aeruginosa infections,” Emerging Infectious Diseases, vol. 4, no. 4, pp. 551–560, 1998. View at Google Scholar · View at Scopus
  4. P. S. Charifson, T. H. Grossman, and P. Mueller, “The use of structure-guided design to discover new anti-microbial agents: focus on antibacterial resistance,” Anti-Infective Agents in Medicinal Chemistry, vol. 8, no. 1, pp. 73–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Vila, J. Sánchez-Céspedes, and E. Giralt, “Old and new strategies for the discovery of antibacterial agents,” Current Medicinal Chemistry: Anti-Infective Agents, vol. 4, no. 4, pp. 337–353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. D. Patel, B. D. Mistry, and K. R. Desai, “Synthesis and antimicrobial activity of pyrazolo [3,4-d] pyrimidines,” Indian Journal of Heterocyclic Chemistry, vol. 13, no. 2, pp. 179–180, 2003. View at Google Scholar · View at Scopus
  7. A. Kreutzberger and M. Sellheim, “Antimycotic agents. XIX. [1,2]. 4,6-disubstituted 2-(cyanamino)pyrimidine derivatives,” Journal of Heterocyclic Chemistry, vol. 22, no. 3, pp. 721–723, 1985. View at Google Scholar · View at Scopus
  8. V. Lather and P. V. Chowdary, “Synthesis and antimicrobial activity of N1-(arylidine hydrazidomethyl)-indoles, 2-(substituted aryl)-3-(N1-indolyl acetamidyl)-4-oxo-thiazolidines and 5-benzylidine derivatives of thiazolidinones,” Indian Journal of Pharmaceutical Sciences, vol. 65, no. 6, pp. 576–579, 2003. View at Google Scholar · View at Scopus
  9. G. S. Gadaginamath, A. S. Shyadligeri, and R. R. Kavali, “Chemoselectivity of indole-dicarboxylates towards hydrazine hydrate: part III-synthesis and antimicrobial activity of novel 4- thiazolidinonylindoles,” Indian Journal of Chemistry B: Organic and Medicinal Chemistry, vol. 38, no. 2, pp. 156–159, 1999. View at Google Scholar · View at Scopus
  10. P. Renukadevi and J. S. Biradar, “Synthesis and antimicrobial activity of 3,5-disubstituted-2-[1′-phenyl-5′-thioalkyl-s-triazol-2′-yl] indoles and 3,5-disubstituted-2-[1′-substituted aminomethyl-4′-phenyl-5′ (4′h)-thione-s-triazol-3-yl] indoles,” Indian Journal of Heterocyclic Chemistry, vol. 9, no. 2, pp. 107–112, 1999. View at Google Scholar · View at Scopus
  11. B. Jiang, C. Yang, W. Xiong, and J. Wang, “Synthesis and cytotoxicity evaluation of novel indolylpyrimidines and indolylpyrazines as potential antitumor agents,” Bioorganic and Medicinal Chemistry, vol. 9, no. 5, pp. 1149–1154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. A. Radwan and M. El-Sherbiny, “Synthesis and antitumor activity of indolylpyrimidines: marine natural product meridianin D analogues,” Bioorganic and Medicinal Chemistry, vol. 15, no. 3, pp. 1206–1211, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Hansch, A. Leo, and D. H. Hoekman, Exploring QSAR, Hydrophobic, Electronic and Steric Constants, American Chemical Society, Washington, DC, USA, 1995.
  14. C. Hansch, A. Leo, and D. H. Hoekman, Exploring QSAR, Fundamentals and Application in Chemistry and Biology, American Chemical Society, Washington, DC, USA, 1995.
  15. S. Panda and P. V. R. Chowdary, “Synthesis of novel indolyl-pyrimidine antiinflammatory, antioxidant and antibacterial agents,” Indian Journal of Pharmaceutical Sciences, vol. 70, no. 2, pp. 208–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. F. Veber, S. R. Johnson, H. Cheng, B. R. Smith, K. W. Ward, and K. D. Kopple, “Molecular properties that influence the oral bioavailability of drug candidates,” Journal of Medicinal Chemistry, vol. 45, no. 12, pp. 2615–2623, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Masuda, T. Jikihara, K. Nakamura, A. Kimura, T. Takagi, and H. Fujiwara, “Introduction of solvent-accessible surface area in the calculation of the hydrophobicity parameter log P from an atomistic approach,” Journal of Pharmaceutical Sciences, vol. 86, no. 1, pp. 57–63, 1997. View at Google Scholar
  18. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models. OECD Environment Health and Safety Publications Series on Testing and Assessment No. 69. OECD: Paris, 2007, http://www.oecd.org/dataoecd/55/35/38130292.pdf.
  19. J. G. Topliss and R. P. Edwards, “Chance factors in studies of quantitative structure-activity relationships,” Journal of Medicinal Chemistry, vol. 22, no. 10, pp. 1238–1244, 1979. View at Google Scholar · View at Scopus
  20. R. D. Cramer III, D. E. Patterson, and J. D. Bunce, “Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins,” Journal of the American Chemical Society, vol. 110, no. 18, pp. 5959–5967, 1988. View at Google Scholar · View at Scopus
  21. G. W. Snedecor and W. G. Cochran, Statistical Methods, Oxford and IBH, New Delhi, India, 1967.
  22. S. Chaltterjee, A. S. Hadi, and B. Price, Regression Analysis by Examples, Wiley VCH, New York, NY, USA, 2000.
  23. M. V. Diudea, QSPR/QSAR Studies for Molecular Descriptors, Nova Science, Huntingdon, NY, USA, 2000.
  24. A. M. Doweyko, “3D-QSAR illusions,” Journal of Computer-Aided Molecular Design, vol. 18, no. 7–9, pp. 587–596, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Marrero Ponce, J. A. Castillo Garit, F. Torrens, V. Romero Zaldivar, and E. A. Castro, “Atom, atom-type, and total linear indices of the “molecular pseudograph's atom adjacency matrix”: application to QSPR/QSAR studies of organic compounds,” Molecules, vol. 9, no. 12, pp. 1100–1123, 2004. View at Google Scholar · View at Scopus
  26. A. Golbraikh and A. Tropsha, “Beware of q2!,” Journal of Molecular Graphics and Modelling, vol. 20, no. 4, pp. 269–276, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Strazielle and J. Ghersi-Egea, “Factors affecting delivery of antiviral drugs to the brain,” Reviews in Medical Virology, vol. 15, no. 2, pp. 105–133, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Buydens, D. L. Massart, and P. Geerlings, “Prediction of gas chromatographic retention indexes with topological, physicochemical, and quantum chemical parameters,” Analytical Chemistry, vol. 55, no. 4, pp. 738–744, 1983. View at Google Scholar · View at Scopus