Table of Contents Author Guidelines Submit a Manuscript
Journal of Computer Systems, Networks, and Communications
Volume 2010, Article ID 576243, 10 pages
Research Article

Spatial Diversity Scheme to Efficiently Cancel ISI and ICI in OFDM-OQAM Systems

1Electrical Engineering Department, Faculty of Engineering, University of Jordan, Amman 11942, Jordan
2Centre Technològic de Telecomunicacions de Catalunya, (CTTC), Avenida Carl Friedrich Gauss 7, 08860 Barcelona, Spain

Received 19 August 2010; Accepted 4 October 2010

Academic Editor: Christos Verikoukis

Copyright © 2010 Nizar Zorba and Faouzi Bader. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper is based on an Offset Quadrature Amplitude Modulation (OQAM) Orthogonal Frequency Division Multiplexing (OFDM) transmission scheme that is operated without a Cyclic Prefix (CP), where the multiple transmitting antennas are employed to substantially reduce the inherent intersymbol and intercarrier interference. The proposed scheme avoids the use of the CDMA technology to get rid of the interference. The nonemployment of the CP increases the spectral efficiency in comparison with classical CP-OFDM systems, as it does not employ the CP for its correct performance. On the other hand, the non-employment of the CP comes at cost of Intersymbol Interference (ISI). This paper presents a method which cancels the interference terms by employing a multiantenna precoding strategy based on spatial diversity OQAM-OFDM scheme, so that the overall system can get the advantage of the CP removal while no ISI is generated. Moreover, the proposed system benefits from the multiuser gain through an opportunistic scheduler at the transmitter side to select the user with the best channel characteristics at each instant. The resultant scheme OQAM-OFDM-MIMO data rate is obtained in a closed form expression and proved to be higher than the classical CP-OFDM systems.