Table of Contents Author Guidelines Submit a Manuscript
Journal of Computer Networks and Communications
Volume 2012, Article ID 870281, 20 pages
http://dx.doi.org/10.1155/2012/870281
Research Article

Effective Stochastic Modeling of Energy-Constrained Wireless Sensor Networks

Department of Electrical and Computer Engineering, University of Maine, Orono, ME 04469, USA

Received 16 June 2012; Accepted 11 September 2012

Academic Editor: Runhua Chen

Copyright © 2012 Ali Shareef and Yifeng Zhu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Seyedi and B. Sikdar, “Modeling and analysis of energy harvesting nodes in wireless sensor networks,” in Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 67–71, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Liu and P. H. Chou, “Idle energy minimization by mode sequence optimization,” ACM Transactions on Design Automation of Electronic Systems, vol. 12, no. 4, article 38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic voltage scaled microprocessor system,” in Proceedings of the IEEE International Solid-State Circuits Conference 47th Annual (ISSCC '00), pp. 294–295, February 2000. View at Scopus
  4. T. Pering, T. Burd, and R. Brodersen, “Simulation and evaluation of dynamic voltage scaling algorithms,” in Proceedings of the 1998 International Symposium on Low Power Electronics and Design, pp. 76–81, August 1998. View at Scopus
  5. G. Qu, “What is the limit of energy saving by dynamic voltage scaling?” in Proceedings of the International Conference on Computer-Aided Design (ICCAD '01), pp. 560–563, November 2001. View at Scopus
  6. T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “Dynamic voltage scaled microprocessor system,” IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1571–1580, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Shareef and Y. Zhu, “Energy modeling of processors in wireless sensor networks based on petri nets,” in Proceedings of the 37th International Conference on Parallel Processing Workshops (ICPP '08), pp. 129–134, Portland, Ore, USA, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Shareef and Y. Zhu, “Energy modeling of wireless sensor nodes based on Petri nets,” in Proceedings of the 39th International Conference on Parallel Processing (ICPP '10), pp. 101–110, San Diego, Calif, USA, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Zimmermann, M. Knoke, A. Huck, and G. Hommel, “Towards version 4.0 of TimeNET,” in Proceedings of the 13th GI/ITG Conference on Measurement, Modeling, and Evaluation of Computer and Communication Systems (MMB '06), pp. 477–480, 2006.
  10. P. Hu, Z. Zhou, Q. Liu, and F. Li, “The HMM-based modeling for the energy level prediction in wireless sensor networks,” in Proceedings of the 2007 2nd IEEE Conference on Industrial Electronics and Applications (ICIEA '07), pp. 2253–2258, May 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Zhang and W. Li, “An energy-based stochastic model for wireless sensor networks,” in Proceedings of the Wireless Sensor Network, 2011.
  12. Y. Wang, M. C. Vuran, and S. Goddard, “Stochastic analysis of energy consumption in wireless sensor networks,” in Proceedings of the 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON '10), Boston, Mass, USA, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Jung, T. Teixeira, A. Barton-Sweeney, and A. Savvides, “Model-based design exploration of wireless sensor node lifetimes,” in Proceedings of the 41rth European Conference on Wireless Sensor Networks (EWSN '07), 2007.
  14. S. Coleri, M. Ergen, and T. J. Koo, “Lifetime analysis of a sensor network with hybrid automata modelling,” in Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA '02), pp. 98–104, ACM, New York, NY, USA, September 2002. View at Scopus
  15. S. Kellner, M. Pink, D. Meier, and E. O. Blaß, “Towards a realistic energy model for wireless sensor networks,” in Proceedings of the 5th Annual Conference on Wireless on Demand Network Systems and Services (WONS '08), pp. 97–100, January 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Kamyabpour and D. Hoang, “A task based sensor-centric model for overall energy consumption,” in Proceedings of the 12th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT '11), pp. 237–244, 2011.
  17. N. Kamyabpour and D. B. Hoang, “Modeling overall energy consumption in wireless sensor networks,” submitted, http://arxiv.org/abs/1112.5800.
  18. M. Korkalainen, M. Sallinen, N. Kärkkäinen, and P. Tukeva, “Survey of wireless sensor networks simulation tools for demanding applications,” in Proceedings of the 5th International Conference on Networking and Services (ICNS '09), pp. 102–106, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Fu, Z. Ma, Z. Yu, and G. Fu, “On wireless sensor networks formal modeling based on petri nets,” in Proceedings of the 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM '11), pp. 1–4, 2011.
  20. D. R. Cox, “The analysis of non-markovian stochastic processes by the inclusion of supplementary variables,” Proceedings Cambridge Philosophical Society, vol. 51, no. 3, pp. 433–441, 1955. View at Google Scholar
  21. R. German, “Transient analysis of deterministic and stochastic petri nets by the method of supplementary variables,” in Proceedings of the 3rd International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS ’95), pp. 394–398, IEEE Computer Society, Washington, DC, USA, 1995.
  22. TimeNET 4.0 A Software Tool for the Performability Evaluation with Stochastic and Colored Petri Nets, User Manual.