Table of Contents Author Guidelines Submit a Manuscript
Journal of Computer Networks and Communications
Volume 2012, Article ID 929763, 13 pages
Review Article

Low-Complexity Distortionless Techniques for Peak Power Reduction in OFDM Communication Systems

Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada

Received 3 January 2012; Revised 20 May 2012; Accepted 12 June 2012

Academic Editor: Gill Tsouri

Copyright © 2012 A. Ghassemi and T. A. Gulliver. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A high peak-to-average power ratio (PAPR) is one of the major drawbacks to using orthogonal frequency division multiplexing (OFDM) modulation. The three most effective distortionless techniques for PAPR reduction are partial transmit sequence (PTS), selective mapping (SLM), and tone reservation (TR). However, the high computational complexity due to the inverse discrete Fourier transform (IDFT) is a problem with these approaches. Implementation of these techniques typically employ direct computation of the IDFT, which is not the most efficient solution. In this paper, we consider the development and performance analysis of these distortionless techniques in conjunction with low-complexity IFFT algorithms to reduce the PAPR of the OFDM signal. Recently, proposed IFFT-based techniques are shown to substantially reduce the computational complexity and improve PAPR performance.