Table of Contents Author Guidelines Submit a Manuscript
Journal of Computer Networks and Communications
Volume 2012 (2012), Article ID 929763, 13 pages
http://dx.doi.org/10.1155/2012/929763
Review Article

Low-Complexity Distortionless Techniques for Peak Power Reduction in OFDM Communication Systems

Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada

Received 3 January 2012; Revised 20 May 2012; Accepted 12 June 2012

Academic Editor: Gill Tsouri

Copyright © 2012 A. Ghassemi and T. A. Gulliver. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Communications, vol. 12, no. 2, pp. 56–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Li and L. J. Cimini, “Effects of clipping and filtering on the performance of OFDM,” IEEE Communications Letters, vol. 2, no. 5, pp. 131–133, 1998. View at Google Scholar · View at Scopus
  3. D. Wulich, N. Dinur, and A. Glinowiecki, “Level clipped high-order OFDM,” IEEE Transactions on Communications, vol. 48, no. 6, pp. 928–930, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Ochiai and H. Imai, “Performance analysis of deliberately clipped OFDM signals,” IEEE Transactions on Communications, vol. 50, no. 1, pp. 89–101, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Sharif, M. Gharavi-Alkhansari, and B. H. Khalaj, “On the peak-to-average power of OFDM signals based on oversampling,” IEEE Transactions on Communications, vol. 51, no. 1, pp. 72–78, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Raich, H. Qian, and G. T. Zhou, “Optimization of SNDR for amplitude-limited nonlinearities,” IEEE Transactions on Communications, vol. 53, no. 11, pp. 1964–1972, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Gatherer and M. Polley, “Controlling clipping probability in DMT transmission,” in Proceedings of the 31st Asilomar Conference on Signals, Systems & Computers, pp. 578–584, November 1997. View at Scopus
  8. J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electronics Letters, vol. 38, no. 5, pp. 246–247, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Huang, J. Lu, J. Zheng, J. Chuang, and J. Gu, “Reduction of peak-to-average power ratio of OFDM signals with companding transform,” Electronics Letters, vol. 37, no. 8, pp. 506–507, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE Transactions on Wireless Communications, vol. 3, no. 6, pp. 2030–2039, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. T. A. Wilkinson and A. E. Jones, “Minimisation of the peak to mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proceedings of the IEEE 45th Vehicular Technology Conference, pp. 825–829, July 1995. View at Scopus
  12. J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Transactions on Information Theory, vol. 45, no. 7, pp. 2397–2417, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Wulich, “Reduction of peak to mean ratio of multicarrier modulation using cyclic coding,” Electronics Letters, vol. 32, no. 5, pp. 432–433, 1996. View at Google Scholar · View at Scopus
  14. V. Tarokh and H. Jafarkhani, “On the computation and reduction of the peak-to-average power ratio in multicarrier communications,” IEEE Transactions on Communications, vol. 48, no. 1, pp. 37–44, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. K. G. Paterson, “Generalized Reed-Muller codes and power control in OFDM modulation,” IEEE Transactions on Information Theory, vol. 46, no. 1, pp. 104–120, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Tellado, Peak to average power reduction for multicarrier modulation [Ph.D. thesis], Stanford University, 2000.
  17. B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Transactions on Broadcasting, vol. 49, no. 3, pp. 258–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. B. S. Krongold and D. L. Jones, “An active-set approach for OFDM PAR reduction via tone reservation,” IEEE Transactions on Signal Processing, vol. 52, no. 2, pp. 495–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. H. Mueller and J. B. Huber, “Novel peak power reduction scheme for OFDM,” in Proceedings of the International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '97), pp. 1090–1094, September 1997. View at Scopus
  20. M. Breiling, S. H. Müller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Communications Letters, vol. 5, no. 6, pp. 239–241, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Alavi, C. Tellambura, and I. Fair, “PAPR reduction of OFDM signals using partial transmit sequence: an optimal approach using sphere decoding,” IEEE Communications Letters, vol. 9, no. 11, pp. 982–984, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Carson and T. A. Gulliver, “Peak-to-average power ratio reduction of OFDM using repeat-accumulate codes and selective mapping,” in Proceedings of the IEEE International Symposium on Information Theory, p. 244, July 2002. View at Scopus
  23. A. D. S. Jayalath and C. Tellambura, “SLM and PTS peak-power reduction of OFDM signals without side information,” IEEE Transactions on Wireless Communications, vol. 4, no. 5, pp. 2006–2013, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Wang and C. Tellambura, “An adaptive-scaling tone reservation algorithm for PAR reduction in OFDM systems,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '06), pp. 1–5, December 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Ghassemi and T. A. Gulliver, “A low-complexity PTS-based radix FFT method for PAPR reduction in OFDM systems,” IEEE Transactions on Signal Processing, vol. 56, no. 3, pp. 1161–1166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Ghassemi and A. T. Gulliver, “Partial selective mapping OFDM with low complexity IFFTs,” IEEE Communications Letters, vol. 12, no. 1, pp. 4–6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Ghassemi and T. Gulliver, “PAPR reduction of OFDM using PTS and error-correcting code subblocking—transactions papers,” IEEE Transactions on Wireless Communications, vol. 9, no. 3, pp. 980–989, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Ghassemi and T. A. Gulliver, “A simplified suboptimal algorithm for tone reservation OFDM,” in Proceedings of the IEEE International Conference on Communications (ICC '09), pp. 1–5, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. C. C. Feng, C. Y. Wang, C. Y. Lin, and Y. H. Hung, “Protection and transmission of side information for peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences,” in Proceedings of the IEEE 58th Vehicular Technology Conference (VTC '03), pp. 2461–2465, October 2003. View at Scopus
  30. R. W. Bäuml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electronics Letters, vol. 32, no. 22, pp. 2056–2057, 1996. View at Google Scholar · View at Scopus
  31. S. H. Muller and J. B. Huber, “Comparison of peak power reduction schemes for OFDM,” in Proceedings of the IEEE Global Telecommunications Mini-Conference, pp. 1–5, November 1997. View at Scopus
  32. N. Ohkubo and T. Ohtsuki, “Design criteria for phase sequences in selected mapping,” in Proceedings of the 57th IEEE Semiannual Vehicular Technology Conference (VTC '03), pp. 373–377, April 2003. View at Scopus
  33. D. W. Lim, S. J. Heo, J. S. No, and H. Chung, “A new PTS OFDM scheme with low complexity for PAPR reduction,” IEEE Transactions on Broadcasting, vol. 52, no. 1, pp. 77–82, 2006. View at Publisher · View at Google Scholar · View at Scopus