Table of Contents Author Guidelines Submit a Manuscript
Journal of Computer Networks and Communications
Volume 2013, Article ID 351435, 13 pages
http://dx.doi.org/10.1155/2013/351435
Research Article

Estimation of Modelling Parameters for H.263-Quantized Video Traces

National Center for Scientific Research “DEMOKRITOS”, Institute of Informatics and Telecommunications, Agia Paraskevi, Attici, 15310 Athens, Greece

Received 28 December 2012; Revised 6 March 2013; Accepted 7 March 2013

Academic Editor: Rui Zhang

Copyright © 2013 A. Drigas and S. Kouremenos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J. D. Robbins, “Performance models of statistical multiplexing in packet video communications,” IEEE Transactions on Communications, vol. 36, no. 7, pp. 834–844, 1988. View at Google Scholar · View at Scopus
  2. R. Kishimoto, Y. Ogata, and F. Inumara, “Generation interval distribution characteristics of packetized variable rate video coding data streams in an ATM network,” IEEE Journal on Selected Areas in Communications, vol. 7, no. 5, pp. 833–841, 1989. View at Publisher · View at Google Scholar · View at Scopus
  3. H. S. Chin, J. W. Goodge, R. Griffiths, and D. J. Parish, “Statistics of video signals for viewphone-type pictures,” IEEE Journal on Selected Areas in Communications, vol. 7, no. 5, pp. 826–832, 1989. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Nomura, T. Fujii, and N. Ohta, “Basic characteristics of variable rate video coding in ATM environment,” IEEE Journal on Selected Areas in Communications, vol. 7, no. 5, pp. 752–760, 1989. View at Publisher · View at Google Scholar · View at Scopus
  5. D. P. Heyman, A. Tabatabai, and T. V. Lakshman, “Statistical analysis and simulation study of video teleconference traffic in ATM networks,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 2, no. 1, pp. 49–59, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Cohen and D. P. Heyman, “Performance modeling of video teleconferencing in ATM networks,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, no. 6, pp. 408–420, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. D. M. Lucantoni, M. F. Neuts, and A. R. Reibman, “Methods for performance evaluation of VBR video traffic models,” IEEE/ACM Transactions on Networking, vol. 2, no. 2, pp. 176–180, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Law and W. D. Kelton, Simulation Modelling and Analysis, McGraw-Hill Higher Education, 3nd edition, 1999.
  9. G. Sisodia, L. Guan, M. Hedley, and S. De, “A new modeling approach of H.263+ VBR coded video sources in ATM networks,” Real-Time Imaging, vol. 6, no. 5, pp. 347–357, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Domoxoudis, S. Kouremenos, V. Loumos, and A. Drigas, “Modelling and simulation of videoconference traffic from VBR video encoders,” in Proceedings of the Performance Modeling and Evaluation of Heterogeneous Networks (HET-NETs '04), 2004, http://www.comp.brad.ac.uk/het-net/HET-NETs04/papers.html.
  11. P. A. Jacosb and P. A. W. Lewis, “Time series generated by mixtures,” Journal of Time Series Analysis, vol. 4, no. 1, pp. 19–36, 1983. View at Google Scholar
  12. A. Elwalid, D. Heyman, T. V. Lakshman, D. Mitra, and A. Weiss, “Fundamental bounds and approximations for ATM multiplexers with applications to video teleconferencing,” IEEE Journal on Selected Areas in Communications, vol. 13, no. 6, pp. 1004–1016, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. T. V. Lakshman, A. Ortega, and A. R. Reibman, “VBR Video: tradeoffs and potentials,” Proceedings of the IEEE, vol. 86, no. 5, pp. 952–972, 1998. View at Google Scholar · View at Scopus
  14. R. Bo, “Modeling and simulation of broadband satellite networks—part II: traffic modeling,” IEEE Communications Magazine, vol. 37, no. 7, pp. 48–56, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. MPEG-4 Overview, http://www.m4if.org//resources/Overview.pdf.
  16. ITU Recommendation (01/05). H.263: Video coding for low bit rate communication, http://www.itu.int/rec/T-REC-H.263-200501-I/en.
  17. A. Alheraish, “Autoregressive video conference models,” International Journal of Network Management, vol. 14, no. 5, pp. 329–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Shahbazian and K. J. Christensen, “TSGen: a tool for modeling of frame loss in streaming video,” International Journal of Network Management, vol. 14, no. 5, pp. 315–327, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Abdennour, “Short-term MPEG-4 video traffic prediction using ANFIS,” International Journal of Network Management, vol. 15, no. 6, pp. 377–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Abdennour, “VBR video traffic modeling and synthetic data generation using GA-optimized Volterra filters,” International Journal of Network Management, vol. 17, no. 3, pp. 231–241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. F. H. P. Fitzek and M. Reisslein, “MPEG-4 and H.263 video traces for network performance evaluation,” IEEE Network, vol. 15, no. 6, pp. 40–54, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Skianis, K. Kontovasilis, A. Drigas, and M. Moatsos, “Measurement and statistical analysis of asymmetric multipoint videoconference traffic in IP networks,” Telecommunication Systems, vol. 23, no. 1-2, pp. 95–122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Lazaris, P. Koutsakis, and M. Paterakis, “A new model for video traffic originating from multiplexed MPEG-4 videoconference streams,” Performance Evaluation, vol. 65, no. 1, pp. 51–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Koutsakis, “On modeling multiplexed VBR videoconference traffic from H.263 video coders,” Computer Communications, vol. 31, no. 1, pp. 1–4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Dai, Y. Zhang, and D. Loguinov, “A unified traffic model for MPEG-4 and H.264 video traces,” IEEE Transactions on Multimedia, vol. 11, no. 5, pp. 1010–1023, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Rao, Z. Huang, and D. Yang, “An emperical traffic model of M2M mobile streaming services,” in Proceedings of the Fourth International Conference on Multimedia Information Networking and Security (MINES '12)), pp. 400–404, November 2012.
  27. FFmpeg Documentation, http://ffmpeg.org/ffmpeg.html.
  28. Open Source Streaming Server, http://developer.apple.com/opensource/server/streaming/index.html.
  29. S. Xu, Z. Huang, and Y. Yao, “An analytically tractable model for video conference traffic,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, no. 1, pp. 63–67, 2000. View at Google Scholar · View at Scopus
  30. A. Erramilli, O. Narayan, and W. Willinger, “Experimental queueing analysis with long-range dependent packet traffic,” IEEE/ACM Transactions on Networking, vol. 4, no. 2, pp. 209–223, 1996. View at Google Scholar · View at Scopus
  31. A. Drigas, S. Kouremenos, Y. Bakopoulos, and V. Loumos, “A study of H.263 traffic modeling in multipoint videoconference sessions over IP networks,” Computer Communications, vol. 29, no. 3, pp. 372–391, 2006. View at Publisher · View at Google Scholar · View at Scopus