Table of Contents Author Guidelines Submit a Manuscript
Journal of Computer Networks and Communications
Volume 2013 (2013), Article ID 791097, 13 pages
http://dx.doi.org/10.1155/2013/791097
Research Article

Robust On-Demand Multipath Routing with Dynamic Path Upgrade for Delay-Sensitive Data over Ad Hoc Networks

1Electrical and Computer Engineering, San Diego State University, San Diego, CA 92182, USA
2Air Force Research Laboratory, Rome, NY 13441, USA

Received 10 December 2012; Accepted 6 February 2013

Academic Editor: Liansheng Tan

Copyright © 2013 Sunil Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers,” in Proceedings of the ACM Conference on Communications Architectures, Protocols and Applications (SIGCOMM ’94), pp. 234–244, 1994.
  2. T. Clausen and P. Jaqcquet, “Optimized link state routing (OLSR) RFC,” RFC 3626, 2003, http://www.ietf.org/rfc/rfc3626.txt.
  3. J. Tsai and T. Moors, “A review of multipath routing protocols: from wireless ad hoc to mesh networks,” in Proceedings of the ACoRN Early Career Researcher Workshop on Wireless Multihop Networking, Australia, 2006.
  4. C. Mbarushimana and A. Shahrabi, “Comparative study of reactive and proactive routing protocols performance in mobile ad hoc networks,” in Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops/Symposia (AINAW '07), pp. 679–684, May 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Perkins, E. Belding Royer, and S. R. Das, “Ad-hoc on-demand distance vector (AODV) routing,” RFC 3561, 2003, http://www.ietf.org/rfc/rfc3561.txt.
  6. D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks,” in Mobile Computing, ch 5, Kluwer Academic Publishers, 1996. View at Google Scholar
  7. M. K. Marina and S. R. Das, “Ad hoc on-demand multipath distance vector routing,” Wireless Communications and Mobile Computing, vol. 6, no. 7, pp. 969–988, 2006. View at Google Scholar
  8. S. Tang, B. Zhang, M. Watanabe, and S. Tanaka, “A link heterogeneity-aware on-demand routing (LHAOR) protocol utilizing local update and RSSI information,” IEICE Transactions on Communications, vol. 88, no. 9, pp. 3588–3597, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Novatnack, L. Greenwald, and H. Arora, “Evaluating ad hoc routing protocols with respect to quality of service,” Tech. Rep. DU-CS-04-05, Department Computer Science, Drexel University, Philadelphia, Pa, USA, 2004. View at Google Scholar
  10. S. J. Lee and M. Gerla, “AODV-BR: backup routing in ad hoc networks,” in Proceedings of the IEEE Wireless Communications and Networking Conference, pp. 1311–1316, Chicago, Ill, USA, September 2000. View at Scopus
  11. H. U. Rehman and L. Wolf, “Performance enhancement in AODV with accessibility prediction,” in Proceedings of the IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems (MASS '07), pp. 1–6, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Mtibaa and F. Kamoun, “MMDV: multipath and MPR based AODV routing protocol,” in Proceedings of the IFIP 5th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net '06), pp. 137–144, 2006.
  13. X. Li and L. Cuthbert, “Node-disjointness-based multipath routing for mobile ad hoc networks,” in Proceedings of the 1st ACM International Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN '04), pp. 23–29, New York, NY, USA, October 2004. View at Scopus
  14. S. Lee and M. Gerla, “Split multipath routing with maximally disjoint paths in ad hoc networks,” 2001, https://citeseer.ist.psu.edu/lee01split.html.
  15. G. Koltsidas, S. Karapantazis, G. Theodoridis, and F. N. Pavlidou, “A detailed study of dynamic manet on-demand multipath routing for Mobile Ad hoc Networks,” in Proceedings of the 4th IEEE and IFIP International Conference on Wireless and Optical Communications Networks (WOCN '07), July 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi, “A framework for reliable routing in mobile ad hoc networks,” in Proceedings of the 22nd Annual Joint Conference on the IEEE Computer and Communications Societies, pp. 270–280, April 2003. View at Scopus
  17. S. Yin and X. Lin, “MALB: MANET adaptive load balancing,” in Proceedings of the IEEE 60th Vehicular Technology Conference (VTC '04), pp. 2843–2847, September 2004. View at Scopus
  18. M. Tauchi, T. Ideguchi, and T. Okuda, “Ad-hoc routing protocol avoiding route breaks based on AODV,” in Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS ’05), Washington, DC, USA, January 2005. View at Scopus
  19. S. Crisóstomo, S. Sargento, P. Brandão, and R. Prior, “Improving AODV with preemptive local route repair,” in Proceedings of the International Workshop on Wireless Ad-Hoc Networks, pp. 223–227, June 2004. View at Scopus
  20. R. S. Chang and S. J. Leu, “Long-lived path routing with received signal strength for ad hoc networks,” in Proceedings of the 1st International Symposium on Wireless Pervasive Computing, pp. 1–6, January 2006. View at Scopus
  21. P. Sambasivam, A. Murthy, and E. Belding-Royer, “Dynamically adaptive multipath routing based on AODV,” in Proceedings of the IFIP Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net '04), Bodrum, Turkey, June 2004.
  22. M. Khazaei and R. Berangi, “A multi-path routing protocol with fault tolerance in mobile ad hoc networks,” in Proceedings of the 14th International CSI Computer Conference (CSICC '09), pp. 77–82, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Chintawar, M. Chatterjee, and A. Vidhate, “AOMDV-APLP: an enhanced algorithm with accessibility and link breakage prediction,” in Proceedings of the International Conference and Workshop on Emerging Trends in Technology (ICWET '11), pp. 841–845, February 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. V. Mallapur and S. Terdal, “Enhanced ad-hoc on demand multipath distance vector routing protocol (EAOMDV),” International Journal of Computer Science and Information Security, vol. 7, no. 3, pp. 166–170, 2010. View at Google Scholar
  25. X. Chen, H. M. Jones, and D. Jayalath, “Channel-aware routing in MANETs with route handoff,” IEEE Transactions on Mobile Computing, vol. 10, no. 1, pp. 108–121, 2011. View at Google Scholar
  26. N. S. Kulkarni, B. Raman, and I. Gupta, “On demand routing protocols for mobile ad hoc networks: a review,” in Proceedings of the IEEE IAAC, pp. 586–591, Patiala, India, March 2009.
  27. T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. H.264/AVC Reference Software JM14.2, ISO/IEC Standard, http://iphome.hhi.de/suehring/tml/download/.
  29. J. Klaue, B. Rathke, and A. Wolisz, “EvalVid—a framework for video transmission and quality evaluation,” in Proceedings of the International Conference on Modeling Techniques and Tools for Computer Performance Evaluation, pp. 255–272, 2003.