Table of Contents
Journal of Coatings
Volume 2013, Article ID 262310, 5 pages
http://dx.doi.org/10.1155/2013/262310
Research Article

Tribological Characteristics Improvement of Wear Resistant MAO-Coatings

Gubkin Russian State University of Oil and Gas, 65 Leninsky Prospect, Moscow 119991, Russia

Received 24 March 2013; Accepted 3 June 2013

Academic Editor: Fahmina Zafar

Copyright © 2013 V. N. Malyshev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Microarc Oxidation, The Science and Humanity, Znanie, Moscow, Russia, 1981.
  2. G. A. Markov, V. I. Belevantsev, O. P. Terleeva, E. K. Shulepko, and A. I. Slonova, “Microarc oxidation,” Vestnik Mashinostroeniya, vol. 1, series 6, p. 34, 1992. View at Google Scholar
  3. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, “Plasma electrolysis for surface engineering,” Surface and Coatings Technology, vol. 122, no. 2-3, pp. 73–93, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington, and A. Matthews, “Discharge characterization in plasma electrolytic oxidation of aluminium,” Journal of Physics D, vol. 36, no. 17, pp. 2110–2120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. A. Petrosyants, V. N. Malyshev, V. A. Fedorov, and G. A. Markov, “Wear kinetics of coatings deposited by microarc oxidation,” Trenie i Iznos, vol. 5, no. 2, pp. 127–130, 1984 (Russian). View at Google Scholar · View at Scopus
  6. V. N. Malyshev, “Coating formation by anodic-cathodic microarc oxidation,” Zashchita Metallov, vol. 32, no. 6, pp. 662–667, 1996 (Russian). View at Google Scholar · View at Scopus
  7. V. N. Malyschev, “Mikrolichtbogen-Oxidation-ein neuartiges Verfahren zur Verfestigung von Aluminiumoberflaechen,” Metalloberflaech, no. 8, pp. S606–S608, 1995. View at Google Scholar
  8. I. N. Andreeva, E. V. Veselovskaya, E. I. Nalivayko, A. D. Pechenkin, V. I. Buchgalter, and A. V. Polyakov, “Ultrahigh molecular weight polyethylene with high density,” L: Chimia, p. 40, 1982 (Russian). View at Google Scholar
  9. V. N. Malyshev, “Neue Anwendungsmoeglichkeiten fuer Aluminium,” Metalloberflaeche, no. 1-2, pp. S28–S29, 2006. View at Google Scholar
  10. S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya et al., “Production of hard and heat-resistant coatings on aluminium using a plasma micro-discharge,” Surface and Coatings Technology, vol. 123, no. 1, pp. 24–28, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Sundararajan and L. Rama Krishna, “Mechanisms underlying the formation of thick alumina coatings through the MAO-coating technology,” Surface and Coatings Technology, vol. 167, no. 2-3, pp. 269–277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Curran and T. W. Clyne, “Porosity in plasma electrolytic oxide coatings,” Acta Materialia, vol. 54, no. 7, pp. 1985–1993, 2006. View at Publisher · View at Google Scholar · View at Scopus