Table of Contents
Journal of Coatings
Volume 2013, Article ID 712812, 6 pages
http://dx.doi.org/10.1155/2013/712812
Research Article

Properties of TiC Coating by Pulsed DC PACVD

1Surface Engineering Laboratory, Materials Engineering Department, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
2Advanced Materials and Renewable Energies Department, Iranian Research Organization for Science and Technology, P.O. Box 15815-3538, Tehran, Iran

Received 25 March 2013; Revised 27 September 2013; Accepted 30 September 2013

Academic Editor: Juan J. De Damborenea

Copyright © 2013 Mahboobeh Azadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the PACVD technique, temperature and gas flow rate are two important parameters affecting the coating characteristics. Effect of these parameters on mechanical behaviors of TiC coating that was deposited on hot work tool steel (H13) was investigated in this paper. We analyzed TiC coating composition and structure with grazing incidence X-ray diffraction (GIXRD) and Fourier transformation infrared spectroscopy (FTIR). The mechanical properties of the coatings, such as microhardness, wear resistance, and surface roughness, were studied with Knoop hardness indentation, pin on disk wear tests, and atomic force microscopy, respectively. When the deposition temperature decreased from 490°C to 450°C and the CH4 to TiCl4 flow rate ratio was also increased from 1.5 to 6, TiC coating color changed from dark gray to silver. The best mechanical properties such as a high hardness (27 GPa), wear resistance, and low surface roughness were related to the coating that was deposited at 450°C.