Table of Contents
Journal of Composites
Volume 2013 (2013), Article ID 274527, 9 pages
http://dx.doi.org/10.1155/2013/274527
Research Article

Tribological Performance Optimization of Al-7.5% SiCp Composites Using the Taguchi Method and Grey Relational Analysis

Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India

Received 11 May 2013; Accepted 7 August 2013

Academic Editor: Masamichi Kawai

Copyright © 2013 Shouvik Ghosh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Ma, H. Yamaura, D. A. Koss, and R. C. Voigt, “Dry sliding wear behavior of cast SiC-reinforced Al MMCs,” Materials Science and Engineering A, vol. 360, no. 1-2, pp. 116–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Yalcin and H. Akbulut, “Dry wear properties of A356-SiC particle reinforced MMCs produced by two melting routes,” Materials and Design, vol. 27, no. 10, pp. 872–881, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. C. Sharma, B. M. Girish, R. Kamath, and B. M. Satish, “Effect of SiC particle reinforcement on the unlubricated sliding wear behaviour of ZA-27 alloy composites,” Wear, vol. 213, no. 1-2, pp. 33–40, 1997. View at Google Scholar · View at Scopus
  4. S. Ghosh, R. Behera, G. Sutradhar, and P. Sahoo, “Optimization of friction performance of Al-5%SiC metal matrix composite using Taguchi method,” Journal of Tribology Research, vol. 1, no. 2, pp. 83–89, 2010. View at Google Scholar
  5. S. Ghosh, P. Sahoo, and G. Sutradhar, “Friction performance of Al-10% SiCp reinforced metal matrix composite using Taguchi Method,” ISRN Tribology, vol. 2013, Article ID 386861, 9 pages, 2013. View at Publisher · View at Google Scholar
  6. A. Onat, “Mechanical and dry sliding wear properties of silicon carbide particulate reinforced aluminium-copper alloy matrix composites produced by direct squeeze casting method,” Journal of Alloys and Compounds, vol. 489, no. 1, pp. 119–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Ahlatci, E. Candan, and H. Cimenoglu, “Abrasive wear behavior and mechanical properties of Al-Si/SiC composites,” Wear, vol. 257, no. 5-6, pp. 625–632, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Sahin, “Optimization of testing parameters on the wear behaviour of metal matrix composites based on the Taguchi method,” Materials Science and Engineering A, vol. 408, no. 1-2, pp. 1–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Şahin, “Abrasive wear behaviour of SiC/2014 aluminium composite,” Tribology International, vol. 43, no. 5-6, pp. 939–943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. S. Al-Rubaie, H. N. Yoshimura, and J. D. Biasoli De Mello, “Two-body abrasive wear of Al-SiC composites,” Wear, vol. 233–235, pp. 444–454, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. K. S. Al-Rubaie, H. Goldenstein, and J. D. Biasoli De Mello, “Three-body abrasion of Al-SiC composites,” Wear, vol. 225–229, pp. 163–173, 1999. View at Google Scholar · View at Scopus
  12. G. J. Howell and A. Ball, “Dry sliding wear of particulate-reinforced aluminium alloys against automobile friction materials,” Wear, vol. 181–183, no. 1, pp. 379–390, 1995. View at Google Scholar · View at Scopus
  13. R. N. Rao and S. Das, “Effect of matrix alloy and influence of SiC particle on the sliding wear characteristics of aluminium alloy composites,” Materials and Design, vol. 31, no. 3, pp. 1200–1207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. N. Rao and S. Das, “Effect of sliding distance on the wear and friction behavior of as cast and heat-treated Al-SiCp composites,” Materials and Design, vol. 32, no. 5, pp. 3051–3058, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Martín, M. A. Martínez, and J. Llorca, “Wear of SiC-reinforced Al-matrix composites in the temperature range 20–200°,” Wear, vol. 193, no. 2, pp. 169–179, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Straffelini, M. Pellizzari, and A. Molinari, “Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material,” Wear, vol. 256, no. 7-8, pp. 754–763, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Taguchi, Introduction to Quality Engineering, Asian Productivity Organization, Tokyo, Japan, 1990.
  18. R. K. Roy, A Primer on Taguchi Method, Van Nostraid Reinhold, New York, NY, USA, 1990.
  19. P. J. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill, New York, NY, USA, 2nd edition, 1996.
  20. D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York, NY, USA, 2001.
  21. R. A. Fisher, Design of Experiments, Oliver & Boyd, Edinburgh, UK, 1951.
  22. J. Deng, “Introduction to grey system,” Journal of Grey System, vol. 1, no. 1, pp. 1–24, 1989. View at Google Scholar
  23. Minitab User Manual (Release 13.2), Making Data Analysis Easier, MINITAB Inc, State College, Pa, USA, 2001.