Table of Contents
Journal of Composites
Volume 2013, Article ID 403656, 9 pages
http://dx.doi.org/10.1155/2013/403656
Research Article

Carbon/Phenolic Nanocomposites as Advanced Thermal Protection Material in Aerospace Applications

1Texas State University-San Marcos, Ingram School of Engineering, 601 University Drive, San Marcos, TX 78666-4616, USA
2Texas State University-San Marcos, Department of Physics, 601 University Drive, San Marcos, TX 78666-4616, USA
3The University of Texas at Austin, Department of Mechanical Engineering, Austin, TX 78712, USA

Received 1 February 2013; Revised 21 May 2013; Accepted 21 May 2013

Academic Editor: Xuchun Gui

Copyright © 2013 J. S. Tate et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. W. K. Ho, J. H. Koo, and O. A. Ezekoye, “Kinetics and thermophysical properties of polymer nanocomposites for solid rocket motor insulation,” Journal of Spacecraft and Rockets, vol. 46, no. 3, pp. 526–545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. D. Patton, C. U. Pittman Jr., L. Wang, J. R. Hill, and A. Day, “Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites,” Composites A, vol. 33, no. 2, pp. 243–251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. J. S. Tate, D. Kabakov, and J. H. Koo, “Carbon/phenolic nanocomposites for ablative applications,” in Proceedings of International SAMPE Technical Conference, Salt Lake City, Utah, USA, October 2010. View at Scopus
  4. L. A. Pilato, J. H. Koo, G. E. Wissler, and S. Lao, “A review—phenolic and related resins and their nanomodification into phenolic resin FRP systems,” Journal of Advanced Materials, vol. 40, no. 3, pp. 5–16, 2008. View at Google Scholar · View at Scopus
  5. A. V. Bray, G. Beall, and H. Stretz, “Nanocomposite rocket ablative material,” Air Force Office of Scientific Research STTR Final Report, Spicewood, Tex, USA, 2004. View at Google Scholar
  6. J. H. Koo, L. A. Pilato, and G. E. Wissler, “Polymer nanostructured materials for propulsion systems,” Journal of Spacecraft and Rockets, vol. 44, no. 6, pp. 1250–1262, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M.-K. Yeh, N.-H. Tai, and Y.-J. Lin, “Mechanical properties of phenolic-based nanocomposites reinforced by multi-walled carbon nanotubes and carbon fibers,” Composites Part A, vol. 39, no. 4, pp. 677–684, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. D. Patton, C. U. Pittman Jr., L. Wang, and J. R. Hill, “Vapor grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices,” Composites A, vol. 30, no. 9, pp. 1081–1091, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Liu, Z. Lu, X. Chen, D. Wang, J. Liu, and L. Hu, “Study on phenolic-resin/carbon-fiber ablation composites modified with polyhedral oligomeric silsesquioxanes,” in Proceedings of the 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 605–608, Shenzhen, China, January 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Q.-C. Yu and H. Wan, “Ablation capability of flake graphite reinforced barium-phenolic resin composite under long pulse laser irradiation,” Wuji Cailiao Xuebao/Journal of Inorganic Materials, vol. 27, no. 2, pp. 157–161, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Srikanth, A. Daniel, S. Kumar et al., “Nano silica modified carbon-phenolic composites for enhanced ablation resistance,” Scripta Materialia, vol. 63, no. 2, pp. 200–203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. R. Bahramian and M. Kokabi, “Ablation mechanism of polymer layered silicate nanocomposite heat shield,” Journal of Hazardous Materials, vol. 166, no. 1, pp. 445–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Natali, M. Monti, J. Kenny, and L. Torre, “Synthesis and thermal characterization of phenolic resin/silica nanocomposites prepared with high shear rate-mixing technique,” Journal of Applied Polymer Science, vol. 120, no. 5, pp. 2632–2640, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Natali, M. Monti, J. M. Kenny, and L. Torre, “A nanostructured ablative bulk molding compound: development and characterization,” Composites A, vol. 42, no. 9, pp. 1197–1204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Natali, M. Monti, D. Puglia, J. M. Kenny, and L. Torre, “Ablative properties of carbon black and MWNT/phenolic composites: a comparative study,” Composites A, vol. 43, no. 1, pp. 174–182, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. J. H. Koo, M. Natali, J. S. Tate, and E. Allcorn, “Polymer nanocomposites as ablative materials—a comprehensive review,” International Journal of Energetic Materials and Chemical Propulsion. In press.
  17. J. S. Tate, C. Jacobs, and J. H. Koo, “Dispersion of MWCNT in phenolic resin using different techniques and evaluation of thermal properties,” in Proceedings of International SAMPE Symposium and Exhibition (ISEE '11), Long Beach, Calif, USA, May 2011. View at Scopus
  18. G. Pulci, J. Tirillò, F. Marra, F. Fossati, C. Bartuli, and T. Valente, “Carbon-phenolic ablative materials for re-entry space vehicles: manufacturing and properties,” Composites A, vol. 41, no. 10, pp. 1483–1490, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Natali, M. Monti, L. Torre, and J. M. Kenny, “Nanostructured ablative thermal protection systems,” in Proceedings of International ECNP Conference on Nanostructured Polymers and Nanocomposites, Madrid, Spain, 2010.
  20. E. K. Allcorn, S. Robinson, D. Tschoepe, J. H. Koo, and M. Natali, “Development of an experimental apparatus for ablative nanocomposite testing,” in Proceedings of 47th AIAA/ASME/SAE Joint Propulsion Conference, San Diego, Calif, USA, August 2011.
  21. E. K. Allcorn, M. Natali, and J. H. Koo, “Ablation performance and characterization of thermoplastic polyurethane elastomer nanocomposites,” Composites A, vol. 45, pp. 109–118, 2013. View at Google Scholar
  22. J. J. George and A. K. Bhowmick, “Fabrication and properties of ethylene vinyl acetate-carbon nanofiber nanocomposites,” Nanoscale Research Letters, vol. 3, no. 12, pp. 508–515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Zhao and J. Gou, “Improved fire retardancy of thermoset composites modified with carbon nanofibers,” Science and Technology of Advanced Materials, vol. 10, no. 1, Article ID 015005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. S. Rahatekar, M. Zammarano, S. Matko et al., “Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites,” Polymer Degradation and Stability, vol. 95, no. 5, pp. 870–879, 2010. View at Publisher · View at Google Scholar · View at Scopus